-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathplot_molecules.py
115 lines (103 loc) · 3.82 KB
/
plot_molecules.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
import numpy as np
from rdkit import Chem
from rdkit.Chem import AllChem, Draw
import matplotlib.pyplot as plt
import sys
import os
def build_molecule_from_fragments(X, A, DB, odor):
if odor == "banana":
fragments = ["C", "O", "*c1ccco1", "*c1ccc(*)c(*)c1"]
type_frag = 4
elif odor == "garlic":
fragments = ["C", "N", "S", "O", "*c1ccccc1*", "*c1ccc(*)o1", "*c1ccsc1"]
type_frag = 7
# number of fragments
N_frag = X.shape[0]
# number of features
F = X.shape[1]
# number of atoms
N = 0
# list of atoms
atoms = []
# indexes of attachment points
positions = []
# edges between atoms, (u, v, type)
# type = 1: single
# type = 1.5: aromatic
# type = 2: double
edges = []
for v in range(N_frag):
for i in range(type_frag):
if X[v, i] == 1:
if fragments[i] in ["C", "N", "S", "O"]:
if fragments[i] == "C":
atoms.append(6)
elif fragments[i] == "N":
atoms.append(7)
elif fragments[i] == "S":
atoms.append(16)
elif fragments[i] == "O":
atoms.append(8)
# at most 4 neighbors using the same attach point
positions.append([N, N, N, N])
N += 1
elif fragments[i] in ["*c1ccccc1*", "*c1ccc(*)c(*)c1"]:
for k in range(6):
atoms.append(6)
edges.append((N + k, N + (k + 1) % 6, 1.5))
positions.append([N, N + 1, N + 3])
N += 6
elif fragments[i] in ["*c1ccco1", "*c1ccc(*)o1"]:
for k in range(4):
atoms.append(6)
atoms.append(8)
for k in range(5):
edges.append((N + k, N + (k + 1) % 5, 1.5))
positions.append([N, N + 3])
N += 5
elif fragments[i] in ["*c1ccsc1"]:
for k in range(4):
atoms.append(6)
atoms.append(16)
for k in range(5):
edges.append((N + k, N + (k + 1) % 5, 1.5))
positions.append([N])
N += 5
for frag_u in range(N_frag):
for frag_v in range(frag_u + 1, N_frag):
if A[frag_u, frag_v] == 1:
u = positions[frag_u][0]
v = positions[frag_v][0]
positions[frag_u].pop(0)
positions[frag_v].pop(0)
if DB[frag_u, frag_v] == 1:
edges.append((u, v, 2))
else:
edges.append((u, v, 1))
mol = Chem.MolFromSmiles("")
mol = AllChem.EditableMol(mol)
for atom in atoms:
mol.AddAtom(Chem.Atom(atom))
# print(atoms)
# print(edges)
for u, v, bond_type in edges:
if bond_type == 1:
mol.AddBond(u, v, Chem.BondType.SINGLE)
elif bond_type == 1.5:
mol.AddBond(u, v, Chem.BondType.AROMATIC)
elif bond_type == 2:
mol.AddBond(u, v, Chem.BondType.DOUBLE)
return mol
odor = str(sys.argv[1])
N = int(sys.argv[2])
seed_gnn = int(sys.argv[3])
seed_grb = int(sys.argv[4])
filename = f"results/optimality/{odor}/N={N}/run_{seed_gnn}_{seed_grb}"
ans = np.load(os.path.join(filename, "ans.npy"))
X = np.load(os.path.join(filename, "X.npy"))
A = np.load(os.path.join(filename, "A.npy"))
DB = np.load(os.path.join(filename, "DB.npy"))
mol = build_molecule_from_fragments(X, A, DB, odor)
img = Draw.MolToImage(mol.GetMol())
plt.imshow(img)
plt.show()