diff --git a/cognite/client/_api/datapoints.py b/cognite/client/_api/datapoints.py index 1b6cb3b035..d3d64f5c4a 100644 --- a/cognite/client/_api/datapoints.py +++ b/cognite/client/_api/datapoints.py @@ -588,7 +588,7 @@ def retrieve( >>> client = CogniteClient() >>> dps = client.time_series.data.retrieve(id=42, start="2w-ago") >>> # You can also use instance_id: - >>> from cognite.client.data_classes.data_modeling.ids import NodeId + >>> from cognite.client.data_classes.data_modeling import NodeId >>> dps = client.time_series.data.retrieve(instance_id=NodeId("ts-space", "foo")) Although raw datapoints are returned by default, you can also get aggregated values, such as `max` or `average`. You may also fetch more than one time series simultaneously. Here we are diff --git a/cognite/client/_api/time_series.py b/cognite/client/_api/time_series.py index 77bbc65fed..8df0fa8c44 100644 --- a/cognite/client/_api/time_series.py +++ b/cognite/client/_api/time_series.py @@ -631,6 +631,20 @@ def update( >>> client = CogniteClient() >>> my_update = TimeSeriesUpdate(id=1).description.set("New description").metadata.add({"key": "value"}) >>> res = client.time_series.update(my_update) + + Perform a partial update on a time series by instance id:: + + >>> from cognite.client import CogniteClient + >>> from cognite.client.data_classes import TimeSeriesUpdate + >>> from cognite.client.data_classes.data_modeling import NodeId + + >>> client = CogniteClient() + >>> my_update = ( + ... TimeSeriesUpdate(instance_id=NodeId("test", "hello")) + ... .external_id.set("test:hello") + ... .metadata.add({"test": "hello"}) + ... ) + >>> client.time_series.update(my_update) """ return self._update_multiple( list_cls=TimeSeriesList,