-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathscan.py
294 lines (275 loc) · 9.42 KB
/
scan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
import cv2
import numpy as np
from transformers import CLIPProcessor, CLIPModel
# from transformers import AutoImageProcessor, AutoModel
import urllib
import ssl
import torch
import json
import os
import string
import csv
from pymilvus import (
connections,
utility,
FieldSchema,
CollectionSchema,
DataType,
Collection,
)
import sys
import util
font = cv2.FONT_HERSHEY_SIMPLEX
fontScale = .5
fontColor = (255,255,255)
fontBorder = (0,0,0)
lineType = 2
def save(name, num, prices, foil, csvWriter):
try:
cv2.destroyWindow("important")
except:
pass
if prices == None:
prices = "0.01"
if float(prices) > 2:
img = np.zeros([220, 400, 3])
img[:,:,2]+=255
writeText(img,name+" $"+prices+" greater than $2",
(10,100))
cv2.imshow("important", img)
csvWriter.writerow([num, name, prices, foil])
def openCsv(config):
if len(sys.argv) < 3:
print(sys.argv[0]+' CSV_FILE_NAME DESIRED_CARDS_PER_FILE [set]')
exit()
s = ''
if len(sys.argv) >= 4:
s = sys.argv[3]
name = sys.argv[1]
desriedLines = int(sys.argv[2])
if not name.endswith('.csv'):
name += '.csv'
# onedrive = os.environ["OneDrive"]
# the directory to write cards to.
docDir = ''#os.path.join(onedrive, "Documents\\Real World\\Collections\\"+config['type'])
name = os.path.join(docDir, name)
if os.path.exists(name):
with open(name) as f:
lines = sum(1 for _ in f)
print('file already exists, appending')
csvwriter = csv.writer(open(name,'a', newline=''))
else:
csvwriter = csv.writer(open(name,'w', newline=''))
lines = 0
if lines >= desriedLines:
print(name,'already has',lines,'entries')
exit()
return(csvwriter, lines, desriedLines, s)
def writeText(boundImg,text,
bottomLeftCornerOfText):
thickness=3
cv2.putText(boundImg,text,
bottomLeftCornerOfText,
font,
fontScale,
fontBorder,
thickness,
lineType)
thickness=1
cv2.putText(boundImg,text,
bottomLeftCornerOfText,
font,
fontScale,
fontColor,
thickness,
lineType)
def getImage(collection, csvWriter, lines, desiredLines, s, config, model):
boudingScore = 0.5
cam = cv2.VideoCapture(0,cv2.CAP_DSHOW)
cam.set(cv2.CAP_PROP_FRAME_WIDTH, 1920)
cam.set(cv2.CAP_PROP_FRAME_HEIGHT, 1080)
cv2.namedWindow('test')
count = 0
previous = ''
found = False
imNum = 0
sname = ''
while True:
ret,frame = cam.read()
if not ret:
print('failed to grab frame')
if found:
k = cv2.waitKey(2)
if k%256 == 13:
lines+=1
print('accepted',lines)
foil = False
try:
p = prices['usd']
except:
p = "0.01"
save(name, num, p, foil, csvWriter)
if lines >= desiredLines:
print('complete')
break
sname=''
imNum = 0
found=False
elif k%256 == 27:
print('reset')
sname=''
imNum = 0
found=False
elif k%256 == 9:
lines+=1
print('accepted foil',lines)
foil = True
try:
p = prices['usd_foil']
except:
p = prices['usd']
save(name, num, p, foil, csvWriter)
if lines >= desiredLines:
print('complete')
break
sname=''
imNum = 0
found=False
elif chr(k%256) in string.printable:
# print(k)
sname+=chr(k%256)
imNum = 0
print(sname)
found=False
if k%256 == 0:
imNum+=1
found=False
if imNum >= len(rets) or rets[imNum][3] <= boudingScore:
print('nope')
imNum = 0
continue
if imNum == 0:
if s != '' and s[-1]!='-':
s+='-'
img, rets = findBoundingBox(collection, frame, s+sname, model)
if len(rets) == 0:
if sname != '':
sname = ''
print('invalid name')
score = 0
else:
name, num, prices, score = rets[imNum]
boundImg = img.copy()
if score > boudingScore or sname != '':
# for ret in rets[1:]:
# if ret[0] == name:
# print('\t',ret[1], ret[3])
bottomLeftCornerOfText = (5,60)
writeText(boundImg,name,
bottomLeftCornerOfText)
for i in range(len(rets)):
if i!= imNum and rets[i][3] <= boudingScore:
break
x = i%2
y = i//2
bottomLeftCornerOfText = (5+x*100,100+y*20)
writeText(boundImg,rets[i][1],
bottomLeftCornerOfText)
if i == imNum:
bottomLeftCornerOfText = (5+x*100,105+y*20)
underline = '_'*len(num)
writeText(boundImg,underline,
bottomLeftCornerOfText)
bottomLeftCornerOfText = (5,140)
try:
writeText(boundImg,'non foil: $'+str(prices['usd']),
bottomLeftCornerOfText)
except Exception as e:
pass
bottomLeftCornerOfText = (5,160)
try:
writeText(boundImg,'foil: $'+str(prices['usd_foil']),
bottomLeftCornerOfText)
except:
pass
found=True
cv2.imshow('test', boundImg)
k = cv2.waitKey(1)
if k%256 == 27:
print('leaving')
break
if k%256 == 32:
print('leaving')
break
cam.release()
cv2.destroyAllWindows()
return frame
def findBoundingBox(collection, frame, name, model):
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
ret,thresh = cv2.threshold(gray,127,255,cv2.THRESH_BINARY)
# thresh = cv2.adaptiveThreshold(gray,255,cv2.ADAPTIVE_THRESH_MEAN_C,\
# cv2.THRESH_BINARY,3,2)
# contours, _ = cv2.findContours(thresh,cv2.RETR_TREE,cv2.CHAIN_APPROX_NONE)
contours, hierarchy = cv2.findContours(thresh,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
# foundContours = []
for i in range(len(contours)):
rotatedRect = cv2.minAreaRect(contours[i])
if rotatedRect[2] > 45:
rotation = rotatedRect[2]-90
h,w = rotatedRect[1]
else:
rotation = rotatedRect[2]
w,h = rotatedRect[1]
if h <100 or w <100:
continue
heightWidthRatio = h/w
moments = cv2.moments(contours[i])
if heightWidthRatio > 1.1 and heightWidthRatio < 1.5 and moments['m00'] > 10000:
rot_mat = cv2.getRotationMatrix2D(rotatedRect[0], rotation, 1.0)
img1 = cv2.warpAffine(frame, rot_mat, frame.shape[1::-1], flags=cv2.INTER_LINEAR)
w = int(w)
h = int(h)
x = int(rotatedRect[0][0]-w//2)
y = int(rotatedRect[0][1]-h//2)
if y < 0 or x < 0 or h < 0 or w < 0:
print(y,x,h,w)
continue
# x,y,w,h = cv2.boundingRect(countour)
crop_img = img1[y:y+h, x:x+w]
crop_img = cv2.rotate(crop_img, cv2.ROTATE_180)
embeding = computeEmbedding(crop_img, model)
ret = compareEmbedding(collection, embeding, name)
# lowerleftCorner = crop_img[8*h//9:h,0:w//3]
# lowerleftCorner = cv2.resize(lowerleftCorner, (w,h//3),interpolation = cv2.INTER_LINEAR)
# shape = lowerleftCorner.shape
# crop_img[h-shape[0]:h,0:shape[1]] = lowerleftCorner
return crop_img, ret
return frame,[]
def computeEmbedding(frame, model):
new_batch = model[0](text=[''],images=frame, return_tensors="pt")
new_batch.to('cuda')
output = model[1](**new_batch)
embeddings = output.image_embeds.cpu().detach()
return embeddings
def compareEmbedding(collection, embeding, name):
search_params = {
"metric_type": "COSINE",
"params": {"nprobe": 512},
}
sset,_,scnum = name.partition('-')
result = collection.search(embeding.numpy().tolist(), "embedding", search_params, expr=f'searchName like "{name}%" or (set like "{sset}%" and collector_number like "{scnum}%")',limit=4, output_fields=["id", "set","collector_number","prices","name"])
ret = []
for i in range(len(result[0])):
hit = result[0][i]
num = f"{hit.entity.get('set')}-{hit.entity.get('collector_number')}"
name = hit.entity.get('name')
prices = hit.entity.get('prices')
ret.append((name, num, prices, hit.distance))
return ret
if __name__ == '__main__':
config = util.loadConfig()
model = util.loadModel(config)
collection = util.connectDB(config)
collection.load()
csvWriter, lines, desiredLines, s = openCsv(config)
frame = getImage(collection, csvWriter, lines, desiredLines, s, config, model)