Skip to content

Latest commit

 

History

History
50 lines (41 loc) · 2.77 KB

README.md

File metadata and controls

50 lines (41 loc) · 2.77 KB

CorefQA: Coreference Resolution as Query-based Span Prediction

本仓库包含论文CorefQA: Coreference Resolution as Query-based Span Prediction的代码以及数据和预训练模型的获取方式。

实验准备

  • 安装python依赖:pip install -r requirements.txt
  • 准备训练数据:python prepare_training_data.py
  • experiments.conf调节实验所用的超参数。

模型训练

  1. 下载Ontonotes 5.0数据集。
  2. 下载SpanBERT预训练模型。
  3. 运行./setup_training.sh <ontonotes/path/ontonotes-release-5.0> $data_dir进行数据预处理。
  4. 训练模型GPU=0 python train.py <experiment>,训练结果保存在log_root目录,可以用TensorBoard查看训练细节。

使用预训练好的模型

使用如下命令下载预训练好的CorefQA模型。如果你想自己训练CorefQA模型,可以跳过这个步骤。 ./download_pretrained.sh <model_name> (e.g,: spanbert_base, spanbert_large) 将会下载在Ontonotes英文数据集上fine-tune过的CorefQA模型。 您可以将其用于评估 evaluate.py 和预测 predict.py

模型评估

运行 GPU=0 python evaluate.py <experiment>评估模型,可以通过在experiments.conf设置eval_pathconll_eval_path来选择在开发集还是在测试集上做评估。模型的评估效果如下:

Model F1 (%)
CorefQA + SpanBERT-base 79.9
CorefQA + SpanBERT-large 83.1

模型预测

  • 将待预测的文本存为txt文件,每行是一段待预测的文本。如果有speaker信息,把它用(<speaker></speaker>)符号包起来放在他所说的话的前面。例如:
<speaker> Host </speaker> A traveling reporter now on leave and joins us to tell her story. Thank you for coming in to share this with us.
  • 运行 GPU=0 python predict.py <experiment> <input_file> <output_file>会把预测结果以jsonline的形式存入<output_file>中,每个instance的输出结果为list of clusters,每个cluster为list of mentions,每个mention为(text, (span_start, span_end)),例如:
[[('A traveling reporter', (26, 46)), ('her', (81, 84)), ('you', (98, 101))]]

引用

如果您觉得我们的论文很有意思,请引用我们的论文 Coreference Resolution as Query-based Span Prediction.

@article{wu2019coreference,
  title={Coreference Resolution as Query-based Span Prediction},
  author={Wu, Wei and Wang, Fei and Yuan, Arianna and Wu, Fei and Li, Jiwei},
  journal={arXiv preprint arXiv:1911.01746},
  year={2019}
}

致谢

我们在实现时参考了https://github.com/mandarjoshi90/coref,非常感谢!