-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgenerate_albedo.py
125 lines (97 loc) · 4.59 KB
/
generate_albedo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
# script to generate the albedo components for a set of multi-illumination scenes.
import os
import cv2
import numpy as np
import argparse
import imageio
from chrislib.general import (
get_tonemap_scale,
match_scale,
show,
get_brightness,
view
)
from chrislib.data_util import np_to_pil
from intrinsic.pipeline import run_pipeline
from intrinsic.model_util import load_models
# this is set so that opencv can load exr files
os.environ["OPENCV_IO_ENABLE_OPENEXR"] = "1"
def process_scene(root_dir, scene_name, models, tonemap=True, save_imgs=False, png=False):
images = []
albedos = []
for img_idx in range(0, 25):
img = cv2.imread(f'{root_dir}/{scene_name}/dir_{img_idx}_mip2.exr', cv2.IMREAD_ANYCOLOR | cv2.IMREAD_ANYDEPTH)[:, :, ::-1]
prb = cv2.imread(f'{root_dir}/{scene_name}/probes/dir_{img_idx}_gray256.exr', cv2.IMREAD_ANYCOLOR | cv2.IMREAD_ANYDEPTH)[:, :, ::-1]
# create a mask of only valid pixels on the probe, then add a border and erode
# this is to avoid color spill on the edges of the light probe
prb_msk = np.any((prb > 0.01), axis=-1)
prb_msk = np.pad(prb_msk, pad_width=1, mode='constant', constant_values=0)[:, :, None]
prb_msk = cv2.erode(prb_msk.astype(np.uint8), np.ones((11, 11), np.uint8))
prb_msk = prb_msk[1:-1, 1:-1].astype(bool)
# now mask the probe to get valid RGB pixel values and take the median
prb_pix = prb[prb_msk, :]
prb_med = np.median(prb_pix, axis=0)
# get ration of green-red and green-blue
r_ratio = prb_med[1] / prb_med[0]
b_ratio = prb_med[1] / prb_med[2]
# create coeffs to scale the red and blue channels and leave green
wb_coeffs = np.array([r_ratio, 1.0, b_ratio]).reshape(1, 1, 3)
wb_img = img * wb_coeffs
if tonemap:
tm_scale = get_tonemap_scale(wb_img)
tm_img = (tm_scale * wb_img).clip(0, 1)
else:
tm_img = wb_img.clip(0)
images.append(tm_img)
# if the image is in the skip list, we don't use it for the albedo computation
# but the user may want to save the white-balanced and preprocessed version
if img_idx in SKIP_LIST:
continue
# run our pipeline, image already linear, and keep size the same
result = run_pipeline(
models,
tm_img.astype(np.float32),
resize_conf=0.0,
linear=True,
maintain_size=True
)
alb = result['albedo']
albedos.append(alb)
matched = [albedos[0]]
for alb in albedos[1:]:
matched.append(match_scale(alb, albedos[0]))
med_alb = np.median(matched, axis=0)
# if we are saving as png min-max norm to ensure the albedo is between [0-1]
if png:
np_to_pil(med_alb / med_alb.max()).save(f'{root_dir}/{scene_name}/albedo.png')
else:
imageio.imwrite(f'{root_dir}/{scene_name}/albedo.exr', med_alb)
# if the user is saving the images, we write them out as PNGs
if save_imgs:
for idx, img in enumerate(images):
np_to_pil(img).save(f'{root_dir}/{scene_name}/dir_{img_idx}_mip2.png')
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("--mid_path", type=str, help="path to the Multi-Illumination Dataset (train or test)")
parser.add_argument("--weights_path", type=str, default='./weights', help="path to the model weights for the intrinsic pipeline")
parser.add_argument("--save_imgs", action="store_true", help="whether or not to save preprocessed images as PNG")
parser.add_argument("--png", action="store_true", help="whether or not to save output as PNGs by default the albedo is saved as EXR")
args = parser.parse_args()
# this is a list of indices to skip when computing the median albedo
# this helps avoid any bias from images with a hard flash and saturated pixels
SKIP_LIST = [2, 3, 20, 21, 24]
# load model weights (only trained on rendered datasets)
models = load_models('rendered_only')
scenes = os.listdir(args.mid_path)
num_scenes = len(scenes)
print(f'found {num_scenes} scenes')
# for each scene run median albedo computation and save outputs
for i, scene_name in enumerate(scenes):
process_scene(
args.mid_path,
scene_name,
models,
save_imgs=args.save_imgs,
png=args.png
)
print(f'({i + 1} / {num_scenes}) - processed {scene_name}')