-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathtrain_editnet.py
161 lines (129 loc) · 6.23 KB
/
train_editnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import torch
import os
from tqdm import tqdm
import cv2
import numpy as np
from argumentsparser import args
import random
from model.editnettrainer import EditNetTrainer
from dataloader.cocodataset import COCOdataset
from utils.utils import create_exp_name
torch.manual_seed(args.seed)
np.random.seed(args.seed)
random.seed(args.seed)
str_ids = args.gpu_ids.split(',')
args.gpu_ids = []
for str_id in str_ids:
id = int(str_id)
if id >= 0:
args.gpu_ids.append(id)
if len(args.gpu_ids) > 0:
torch.cuda.set_device(args.gpu_ids[0])
if __name__ == '__main__':
dataset_train = COCOdataset(args)
dataset_val = COCOdataset(args, subset='val')
dataloader_train = torch.utils.data.DataLoader(
dataset_train,
batch_size=args.batch_size,
shuffle=args.shuffle,
num_workers=int(args.num_threads),
pin_memory=True,
drop_last=True)
dataloader_val = torch.utils.data.DataLoader(
dataset_val,
batch_size=args.batch_size,
shuffle=False,
num_workers=int(args.num_threads),
pin_memory=True,
drop_last=True)
exp_name = create_exp_name(args, 'EditNet')
if not os.path.exists(os.path.join('./checkpoints', exp_name,'images')):
os.makedirs(os.path.join('./checkpoints', exp_name, 'images'))
trainer = EditNetTrainer(args)
iteration = 0
realism_change = 0
saliency_change = 0
loss_realism = 0
loss_saliency = 0
loss_g = 0
trainer.setTrain()
for epoch in tqdm(range(args.epochs)):
for episode,data in enumerate(dataloader_train):
trainer.setinput(data)
trainer.forward()
trainer.optimize_parameters()
realism_change += torch.mean(trainer.realism_change).item()
saliency_change += torch.mean(trainer.saliency_change).item()
loss_realism += torch.mean(trainer.loss_realism).item()
loss_saliency += torch.mean(trainer.loss_saliency).item()
loss_g += trainer.loss_g.item()
if iteration % args.log_interval == 0:
realism_change = realism_change / args.log_interval
saliency_change = saliency_change / args.log_interval
loss_realism = loss_realism / args.log_interval
loss_saliency = loss_saliency / args.log_interval
loss_g = loss_g / args.log_interval
rgb_in = trainer.rgb[0,...].cpu().detach().numpy().squeeze().transpose([1,2,0])
rgb_out = trainer.result[0,...].cpu().detach().numpy().squeeze().transpose([1,2,0])
mask = trainer.mask[0,...].cpu().detach().numpy().squeeze()
mask = np.dstack([mask, mask, mask])
sal_in = trainer.input_saliency[0,...].cpu().detach().numpy().transpose([1,2,0])
sal_out = trainer.output_saliency[0,...].cpu().detach().numpy().transpose([1,2,0])
sal_diff_ = (sal_in - sal_out).squeeze()
sal_in = np.dstack([sal_in, sal_in, sal_in])
sal_out = np.dstack([sal_out, sal_out, sal_out])
sal_diff = np.zeros_like(sal_in)
sal_diff_ = (sal_diff_ - sal_diff_.min()) / (sal_diff_.max() - sal_diff_.min())
sal_diff[:,:,2] = sal_diff_
sal_diff[:,:,0] = -sal_diff_
sal_diff[:,:,1] = 0.2*mask[:,:,0]
result = np.concatenate((rgb_in, rgb_out, mask, sal_in, sal_out, sal_diff), axis=1)
result = (result * 255).astype(np.uint8)
# log the image to image file named using iteration number and epoch
cv2.imwrite(os.path.join('./checkpoints', exp_name, 'images', 'epoch_{}_iter_{}.png'.format(epoch, iteration)), result)
print({ 'realism_change': realism_change,
'saliency_change': saliency_change,
'loss_realism': loss_realism,
'loss_saliency': loss_saliency,
'loss_g': loss_g})
# print(trainer.logs)
realism_change = 0
saliency_change = 0
loss_realism = 0
loss_saliency = 0
loss_g = 0
trainer.logs = []
if iteration % args.val_interval == 0:
trainer.setEval()
val_realism_change = 0
val_saliency_change = 0
val_loss_realism = 0
val_loss_saliency = 0
val_loss_g = 0
for episode_val,data_val in enumerate(dataloader_val):
with torch.no_grad():
trainer.setinput(data_val)
trainer.forward()
trainer.compute_gloss()
val_realism_change += torch.mean(trainer.realism_change).item()
val_saliency_change += torch.mean(trainer.saliency_change).item()
val_loss_realism += torch.mean(trainer.loss_realism).item()
val_loss_saliency += torch.mean(trainer.loss_saliency).item()
val_loss_g += trainer.loss_g.item()
val_realism_change = val_realism_change / len(dataloader_val)
val_saliency_change = val_saliency_change / len(dataloader_val)
val_loss_realism = val_loss_realism / len(dataloader_val)
val_loss_saliency = val_loss_saliency / len(dataloader_val)
val_loss_g = val_loss_g / len(dataloader_val)
print({'val_realism_change': val_realism_change,
'val_saliency_change': val_saliency_change,
'val_loss_realism': val_loss_realism,
'val_loss_saliency': val_loss_saliency,
'val_loss_g': val_loss_g})
trainer.setTrain()
if iteration % args.savemodel_interval == 0:
model_checkpoint_dir = os.path.join('./checkpoints', exp_name)
if not os.path.exists(model_checkpoint_dir):
os.makedirs(model_checkpoint_dir)
trainer.savemodel(iteration,checkpointdir=model_checkpoint_dir)
iteration = iteration + 1