forked from intel/neural-compressor
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
411 lines (382 loc) · 16.5 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
# pylint:disable=redefined-outer-name,logging-format-interpolation
import logging
import argparse
import os
import onnx
import onnxruntime
import transformers
import torch
import numpy as np
from dataclasses import dataclass
from typing import List, Optional, Union
from neural_compressor.data import DataLoader
logger = logging.getLogger(__name__)
logging.basicConfig(format = "%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt = "%m/%d/%Y %H:%M:%S",
level = logging.WARN)
class ONNXRTBertDataset:
"""Dataset used for model Bert.
Args: data_dir (str): The input data dir.
model_name_or_path (str): Path to pre-trained student model or shortcut name,
selected in the list:
max_seq_length (int, default=128): The maximum length after tokenization.
Sequences longer than this will be truncated,
sequences shorter will be padded.
do_lower_case (bool, default=True): Whether to lowercase the input when tokenizing.
task (str, default=mrpc): The name of the task to fine-tune.
Choices include mrpc, qqp, qnli, rte,
sts-b, cola, mnli, wnli.
model_type (str, default="bert"): model type, support "distilbert", "bert",
"mobilebert", "roberta".
dynamic_length (bool, default=False): Whether to use fixed sequence length.
evaluate (bool, default=True): Whether do evaluation or training.
transform (transform object, default=None): transform to process input data.
filter (Filter objects, default=None): filter out examples according
to specific conditions.
"""
def __init__(self, model, data_dir, model_name_or_path, max_seq_length=128,\
do_lower_case=True, task="mrpc", model_type="bert", dynamic_length=False,\
evaluate=True, transform=None, filter=None):
self.inputs = [inp.name for inp in onnx.load(model).graph.input]
task = task.lower()
model_type = model_type.lower()
assert task in ["mrpc", "qqp", "qnli", "rte", "sts-b", "cola", \
"mnli", "wnli", "sst-2"], "Unsupported task type"
assert model_type in ["distilbert", "bert", "mobilebert", "roberta"], "Unsupported \
model type"
self.dynamic_length = dynamic_length
self.model_type = model_type
self.max_seq_length = max_seq_length
tokenizer = transformers.AutoTokenizer.from_pretrained(model_name_or_path,
do_lower_case=do_lower_case)
self.dataset = load_and_cache_examples(data_dir, model_name_or_path, \
max_seq_length, task, model_type, tokenizer, evaluate)
def __len__(self):
return len(self.dataset)
def __getitem__(self, index):
batch = tuple(t.detach().cpu().numpy() if not isinstance(t, np.ndarray) else t for t in self.dataset[index])
return batch[:len(self.inputs)], batch[-1]
def load_and_cache_examples(data_dir, model_name_or_path, max_seq_length, task, \
model_type, tokenizer, evaluate):
from torch.utils.data import TensorDataset
processor = transformers.glue_processors[task]()
output_mode = transformers.glue_output_modes[task]
# Load data features from cache or dataset file
if not os.path.exists("./dataset_cached"):
os.makedirs("./dataset_cached")
cached_features_file = os.path.join("./dataset_cached", "cached_{}_{}_{}_{}".format(
"dev" if evaluate else "train",
list(filter(None, model_name_or_path.split("/"))).pop(),
str(max_seq_length),
str(task)))
if os.path.exists(cached_features_file):
logger.info("Load features from cached file {}.".format(cached_features_file))
features = torch.load(cached_features_file)
else:
logger.info("Create features from dataset file at {}.".format(data_dir))
label_list = processor.get_labels()
examples = processor.get_dev_examples(data_dir) if evaluate else \
processor.get_train_examples(data_dir)
features = convert_examples_to_features(examples,
tokenizer,
task=task,
label_list=label_list,
max_length=max_seq_length,
output_mode=output_mode,
)
logger.info("Save features into cached file {}.".format(cached_features_file))
torch.save(features, cached_features_file)
# Convert to Tensors and build dataset
all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long)
all_attention_mask = torch.tensor([f.attention_mask for f in features], dtype=torch.long)
all_token_type_ids = torch.tensor([f.token_type_ids for f in features], dtype=torch.long)
all_seq_lengths = torch.tensor([f.seq_length for f in features], dtype=torch.long)
if output_mode == "classification":
all_labels = torch.tensor([f.label for f in features], dtype=torch.long)
elif output_mode == "regression":
all_labels = torch.tensor([f.label for f in features], dtype=torch.float)
dataset = TensorDataset(all_input_ids, all_attention_mask, all_token_type_ids, \
all_seq_lengths, all_labels)
return dataset
def convert_examples_to_features(
examples,
tokenizer,
max_length=128,
task=None,
label_list=None,
output_mode="classification",
pad_token=0,
pad_token_segment_id=0,
mask_padding_with_zero=True,
):
processor = transformers.glue_processors[task]()
if label_list is None:
label_list = processor.get_labels()
logger.info("Use label list {} for task {}.".format(label_list, task))
label_map = {label: i for i, label in enumerate(label_list)}
features = []
for (ex_index, example) in enumerate(examples):
inputs = tokenizer.encode_plus(
example.text_a,
example.text_b,
add_special_tokens=True,
max_length=max_length,
return_token_type_ids=True,
truncation=True,
)
input_ids, token_type_ids = inputs["input_ids"], inputs["token_type_ids"]
# The mask has 1 for real tokens and 0 for padding tokens. Only real
# tokens are attended to.
attention_mask = [1 if mask_padding_with_zero else 0] * len(input_ids)
# Zero-pad up to the sequence length.
seq_length = len(input_ids)
padding_length = max_length - len(input_ids)
input_ids = input_ids + ([pad_token] * padding_length)
attention_mask = attention_mask + \
([0 if mask_padding_with_zero else 1] * padding_length)
token_type_ids = token_type_ids + ([pad_token_segment_id] * padding_length)
assert len(input_ids) == max_length, \
"Error with input_ids length {} vs {}".format(
len(input_ids), max_length)
assert len(attention_mask) == max_length, \
"Error with attention_mask length {} vs {}".format(
len(attention_mask), max_length
)
assert len(token_type_ids) == max_length, \
"Error with token_type_ids length {} vs {}".format(
len(token_type_ids), max_length
)
if output_mode == "classification":
label = label_map[example.label]
elif output_mode == "regression":
label = float(example.label)
else:
raise KeyError(output_mode)
feats = InputFeatures(
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
label=label,
seq_length=seq_length,
)
features.append(feats)
return features
@dataclass(frozen=True)
class InputFeatures:
"""
A single set of features of data.
Property names are the same names as the corresponding inputs to a model.
Args:
input_ids: Indices of input sequence tokens in the vocabulary.
attention_mask: Mask to avoid performing attention on padding token indices.
Mask values selected in ``[0, 1]``: Usually ``1`` for tokens that are NOT MASKED,
``0`` for MASKED (padded) tokens.
token_type_ids: (Optional) Segment token indices to indicate first and second
portions of the inputs. Only some models use them.
label: (Optional) Label corresponding to the input. Int for classification problems,
float for regression problems.
seq_length: (Optional) The length of input sequence before padding.
"""
input_ids: List[int]
attention_mask: Optional[List[int]] = None
token_type_ids: Optional[List[int]] = None
label: Optional[Union[int, float]] = None
seq_length: Optional[List[int]] = None
class ONNXRTGLUE:
"""Computes GLUE score.
Args:
task (str, default=mrpc): The name of the task.
Choices include mrpc, qqp, qnli, rte,
sts-b, cola, mnli, wnli.
"""
def __init__(self, task="mrpc"):
assert task in ["mrpc", "qqp", "qnli", "rte", "sts-b", "cola", \
"mnli", "wnli", "sst-2"], "Unsupported task type"
self.pred_list = None
self.label_list = None
self.task = task
self.return_key = {
"cola": "mcc",
"mrpc": "acc",
"sts-b": "corr",
"qqp": "acc",
"mnli": "mnli/acc",
"qnli": "acc",
"rte": "acc",
"wnli": "acc",
"sst-2": "acc"
}
def update(self, preds, labels):
"""add preds and labels to storage"""
if isinstance(preds, list) and len(preds) == 1:
preds = preds[0]
if isinstance(labels, list) and len(labels) == 1:
labels = labels[0]
if self.pred_list is None:
self.pred_list = preds
self.label_list = labels
else:
self.pred_list = np.append(self.pred_list, preds, axis=0)
self.label_list = np.append(self.label_list, labels, axis=0)
def reset(self):
"""clear preds and labels storage"""
self.pred_list = None
self.label_list = None
def result(self):
"""calculate metric"""
output_mode = transformers.glue_output_modes[self.task]
if output_mode == "classification":
processed_preds = np.argmax(self.pred_list, axis=1)
elif output_mode == "regression":
processed_preds = np.squeeze(self.pred_list)
result = transformers.glue_compute_metrics(\
self.task, processed_preds, self.label_list)
return result[self.return_key[self.task]]
if __name__ == "__main__":
logger.info("Evaluating ONNXRuntime full precision accuracy and performance:")
parser = argparse.ArgumentParser(
description="BERT fine-tune examples for classification/regression tasks.",
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument(
"--model_path",
type=str,
help="Pre-trained model on onnx file"
)
parser.add_argument(
"--benchmark",
action="store_true", \
default=False
)
parser.add_argument(
"--tune",
action="store_true", \
default=False,
help="whether quantize the model"
)
parser.add_argument(
"--output_model",
type=str,
help="output model path"
)
parser.add_argument(
"--mode",
type=str,
help="benchmark mode of performance or accuracy"
)
parser.add_argument(
"--model_name_or_path",
type=str,
help="pretrained model name or path"
)
parser.add_argument(
"--data_path",
type=str,
help="input data path"
)
parser.add_argument(
"--batch_size",
default=8,
type=int,
)
parser.add_argument(
"--task",
type=str,
default="mrpc",
choices=["mrpc", "qqp", "qnli", "rte", "sts-b", "cola", \
"mnli", "wnli", "sst-2"],
help="GLUE task name"
)
parser.add_argument(
"--dynamic_length",
type=bool,
default=False,
help="dynamic length"
)
parser.add_argument(
"--model_type",
type=str,
default="bert",
choices=["distilbert", "bert", "mobilebert", "roberta"],
help="model type"
)
args = parser.parse_args()
dataset = ONNXRTBertDataset(args.model_path,
data_dir=args.data_path,
model_name_or_path=args.model_name_or_path,
task=args.task,
model_type=args.model_type,
dynamic_length=args.dynamic_length)
dataloader = DataLoader(framework='onnxruntime', dataset=dataset, batch_size=args.batch_size)
metric = ONNXRTGLUE(args.task)
def eval_func(model):
metric.reset()
session = onnxruntime.InferenceSession(model.SerializeToString(),
providers=onnxruntime.get_available_providers())
ort_inputs = {}
len_inputs = len(session.get_inputs())
inputs_names = [session.get_inputs()[i].name for i in range(len_inputs)]
for idx, (inputs, labels) in enumerate(dataloader):
if not isinstance(labels, list):
labels = [labels]
inputs = inputs[:len_inputs]
for i in range(len_inputs):
ort_inputs.update({inputs_names[i]: inputs[i]})
predictions = session.run(None, ort_inputs)
metric.update(predictions[0], labels)
return metric.result()
if args.benchmark:
model = onnx.load(args.model_path)
if args.mode == "performance":
from neural_compressor.benchmark import fit
from neural_compressor.config import BenchmarkConfig
conf = BenchmarkConfig(iteration=100,
cores_per_instance=4,
num_of_instance=1)
fit(model, conf, b_dataloader=dataloader)
elif args.mode == "accuracy":
acc_result = eval_func(model)
print("Batch size = %d" % args.batch_size)
print("Accuracy: %.5f" % acc_result)
if args.tune:
# optimize model
from onnxruntime.transformers import optimizer
from onnxruntime.transformers.fusion_options import FusionOptions
opt_options = FusionOptions("bert")
opt_options.enable_embed_layer_norm = False
model_optimizer = optimizer.optimize_model(
args.model_path,
"bert",
num_heads=12,
hidden_size=768,
optimization_options=opt_options)
model = model_optimizer.model
# check the optimized model is valid
try:
onnxruntime.InferenceSession(model.SerializeToString(), providers=onnxruntime.get_available_providers())
except Exception as e:
logger.warning("Optimized model is invalid: {}. ".format(e))
logger.warning("Model optimizer will be skipped. " \
"Try to upgrade onnxruntime to avoid this error")
model = onnx.load(args.model_path)
from neural_compressor import quantization, PostTrainingQuantConfig
config = PostTrainingQuantConfig(approach="dynamic")
q_model = quantization.fit(model,
config,
eval_func=eval_func)
q_model.save(args.output_model)