-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathnodestack.cc
865 lines (774 loc) · 23.1 KB
/
nodestack.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
#define __STDC_FORMAT_MACROS
#include <inttypes.h>
#include <string.h>
#include "nodestack.h"
#include "action.h"
#include "common.h"
#include "threads-model.h"
#include "modeltypes.h"
#include "execution.h"
#include "params.h"
/**
* @brief Node constructor
*
* Constructs a single Node for use in a NodeStack. Each Node is associated
* with exactly one ModelAction (exception: the first Node should be created
* as an empty stub, to represent the first thread "choice") and up to one
* parent.
*
* @param params The model-checker parameters
* @param act The ModelAction to associate with this Node. May be NULL.
* @param par The parent Node in the NodeStack. May be NULL if there is no
* parent.
* @param nthreads The number of threads which exist at this point in the
* execution trace.
*/
Node::Node(const struct model_params *params, ModelAction *act, Node *par,
int nthreads, Node *prevfairness) :
read_from_status(READ_FROM_PAST),
action(act),
params(params),
uninit_action(NULL),
parent(par),
num_threads(nthreads),
explored_children(num_threads),
backtrack(num_threads),
fairness(num_threads),
numBacktracks(0),
enabled_array(NULL),
read_from_past(),
read_from_past_idx(0),
read_from_promises(),
read_from_promise_idx(-1),
future_values(),
future_index(-1),
resolve_promise(),
resolve_promise_idx(-1),
relseq_break_writes(),
relseq_break_index(0),
misc_index(0),
misc_max(0),
yield_data(NULL)
{
ASSERT(act);
act->set_node(this);
int currtid = id_to_int(act->get_tid());
int prevtid = prevfairness ? id_to_int(prevfairness->action->get_tid()) : 0;
if (get_params()->fairwindow != 0) {
for (int i = 0; i < num_threads; i++) {
ASSERT(i < ((int)fairness.size()));
struct fairness_info *fi = &fairness[i];
struct fairness_info *prevfi = (parent && i < parent->get_num_threads()) ? &parent->fairness[i] : NULL;
if (prevfi) {
*fi = *prevfi;
}
if (parent && parent->is_enabled(int_to_id(i))) {
fi->enabled_count++;
}
if (i == currtid) {
fi->turns++;
fi->priority = false;
}
/* Do window processing */
if (prevfairness != NULL) {
if (prevfairness->parent->is_enabled(int_to_id(i)))
fi->enabled_count--;
if (i == prevtid) {
fi->turns--;
}
/* Need full window to start evaluating
* conditions
* If we meet the enabled count and have no
* turns, give us priority */
if ((fi->enabled_count >= get_params()->enabledcount) &&
(fi->turns == 0))
fi->priority = true;
}
}
}
}
int Node::get_yield_data(int tid1, int tid2) const {
if (tid1<num_threads && tid2 < num_threads)
return yield_data[YIELD_INDEX(tid1,tid2,num_threads)];
else
return YIELD_S | YIELD_D;
}
void Node::update_yield(Scheduler * scheduler) {
if (yield_data==NULL)
yield_data=(int *) model_calloc(1, sizeof(int)*num_threads*num_threads);
//handle base case
if (parent == NULL) {
for(int i = 0; i < num_threads*num_threads; i++) {
yield_data[i] = YIELD_S | YIELD_D;
}
return;
}
int curr_tid=id_to_int(action->get_tid());
for(int u = 0; u < num_threads; u++) {
for(int v = 0; v < num_threads; v++) {
int yield_state=parent->get_yield_data(u, v);
bool next_enabled=scheduler->is_enabled(int_to_id(v));
bool curr_enabled=parent->is_enabled(int_to_id(v));
if (!next_enabled) {
//Compute intersection of ES and E
yield_state&=~YIELD_E;
//Check to see if we disabled the thread
if (u==curr_tid && curr_enabled)
yield_state|=YIELD_D;
}
yield_data[YIELD_INDEX(u, v, num_threads)]=yield_state;
}
yield_data[YIELD_INDEX(u, curr_tid, num_threads)]=(yield_data[YIELD_INDEX(u, curr_tid, num_threads)]&~YIELD_P)|YIELD_S;
}
//handle curr.yield(t) part of computation
if (action->is_yield()) {
for(int v = 0; v < num_threads; v++) {
int yield_state=yield_data[YIELD_INDEX(curr_tid, v, num_threads)];
if ((yield_state & (YIELD_E | YIELD_D)) && (!(yield_state & YIELD_S)))
yield_state |= YIELD_P;
yield_state &= YIELD_P;
if (scheduler->is_enabled(int_to_id(v))) {
yield_state|=YIELD_E;
}
yield_data[YIELD_INDEX(curr_tid, v, num_threads)]=yield_state;
}
}
}
/** @brief Node desctructor */
Node::~Node()
{
delete action;
if (uninit_action)
delete uninit_action;
if (enabled_array)
model_free(enabled_array);
if (yield_data)
model_free(yield_data);
}
/** Prints debugging info for the ModelAction associated with this Node */
void Node::print() const
{
action->print();
model_print(" thread status: ");
if (enabled_array) {
for (int i = 0; i < num_threads; i++) {
char str[20];
enabled_type_to_string(enabled_array[i], str);
model_print("[%d: %s]", i, str);
}
model_print("\n");
} else
model_print("(info not available)\n");
model_print(" backtrack: %s", backtrack_empty() ? "empty" : "non-empty ");
for (int i = 0; i < (int)backtrack.size(); i++)
if (backtrack[i] == true)
model_print("[%d]", i);
model_print("\n");
model_print(" read from past: %s", read_from_past_empty() ? "empty" : "non-empty ");
for (int i = read_from_past_idx + 1; i < (int)read_from_past.size(); i++)
model_print("[%d]", read_from_past[i]->get_seq_number());
model_print("\n");
model_print(" read-from promises: %s", read_from_promise_empty() ? "empty" : "non-empty ");
for (int i = read_from_promise_idx + 1; i < (int)read_from_promises.size(); i++)
model_print("[%d]", read_from_promises[i]->get_seq_number());
model_print("\n");
model_print(" future values: %s", future_value_empty() ? "empty" : "non-empty ");
for (int i = future_index + 1; i < (int)future_values.size(); i++)
model_print("[%#" PRIx64 "]", future_values[i].value);
model_print("\n");
model_print(" promises: %s\n", promise_empty() ? "empty" : "non-empty");
model_print(" misc: %s\n", misc_empty() ? "empty" : "non-empty");
model_print(" rel seq break: %s\n", relseq_break_empty() ? "empty" : "non-empty");
}
/****************************** threads backtracking **************************/
/**
* Checks if the Thread associated with this thread ID has been explored from
* this Node already.
* @param tid is the thread ID to check
* @return true if this thread choice has been explored already, false
* otherwise
*/
bool Node::has_been_explored(thread_id_t tid) const
{
int id = id_to_int(tid);
return explored_children[id];
}
/**
* Checks if the backtracking set is empty.
* @return true if the backtracking set is empty
*/
bool Node::backtrack_empty() const
{
return (numBacktracks == 0);
}
void Node::explore(thread_id_t tid)
{
int i = id_to_int(tid);
ASSERT(i < ((int)backtrack.size()));
if (backtrack[i]) {
backtrack[i] = false;
numBacktracks--;
}
explored_children[i] = true;
}
/**
* Mark the appropriate backtracking information for exploring a thread choice.
* @param act The ModelAction to explore
*/
void Node::explore_child(ModelAction *act, enabled_type_t *is_enabled)
{
if (!enabled_array)
enabled_array = (enabled_type_t *)model_malloc(sizeof(enabled_type_t) * num_threads);
if (is_enabled != NULL)
memcpy(enabled_array, is_enabled, sizeof(enabled_type_t) * num_threads);
else {
for (int i = 0; i < num_threads; i++)
enabled_array[i] = THREAD_DISABLED;
}
explore(act->get_tid());
}
/**
* Records a backtracking reference for a thread choice within this Node.
* Provides feedback as to whether this thread choice is already set for
* backtracking.
* @return false if the thread was already set to be backtracked, true
* otherwise
*/
bool Node::set_backtrack(thread_id_t id)
{
int i = id_to_int(id);
ASSERT(i < ((int)backtrack.size()));
if (backtrack[i])
return false;
backtrack[i] = true;
numBacktracks++;
return true;
}
thread_id_t Node::get_next_backtrack()
{
/** @todo Find next backtrack */
unsigned int i;
for (i = 0; i < backtrack.size(); i++)
if (backtrack[i] == true)
break;
/* Backtrack set was empty? */
ASSERT(i != backtrack.size());
backtrack[i] = false;
numBacktracks--;
return int_to_id(i);
}
void Node::clear_backtracking()
{
for (unsigned int i = 0; i < backtrack.size(); i++)
backtrack[i] = false;
for (unsigned int i = 0; i < explored_children.size(); i++)
explored_children[i] = false;
numBacktracks = 0;
}
/************************** end threads backtracking **************************/
/*********************************** promise **********************************/
/**
* Sets a promise to explore meeting with the given node.
* @param i is the promise index.
*/
void Node::set_promise(unsigned int i)
{
if (i >= resolve_promise.size())
resolve_promise.resize(i + 1, false);
resolve_promise[i] = true;
}
/**
* Looks up whether a given promise should be satisfied by this node.
* @param i The promise index.
* @return true if the promise should be satisfied by the given ModelAction.
*/
bool Node::get_promise(unsigned int i) const
{
return (i < resolve_promise.size()) && (int)i == resolve_promise_idx;
}
/**
* Increments to the next promise to resolve.
* @return true if we have a valid combination.
*/
bool Node::increment_promise()
{
DBG();
if (resolve_promise.empty())
return false;
int prev_idx = resolve_promise_idx;
resolve_promise_idx++;
for ( ; resolve_promise_idx < (int)resolve_promise.size(); resolve_promise_idx++)
if (resolve_promise[resolve_promise_idx])
return true;
resolve_promise_idx = prev_idx;
return false;
}
/**
* Returns whether the promise set is empty.
* @return true if we have explored all promise combinations.
*/
bool Node::promise_empty() const
{
for (int i = resolve_promise_idx + 1; i < (int)resolve_promise.size(); i++)
if (i >= 0 && resolve_promise[i])
return false;
return true;
}
/** @brief Clear any promise-resolution information for this Node */
void Node::clear_promise_resolutions()
{
resolve_promise.clear();
resolve_promise_idx = -1;
}
/******************************* end promise **********************************/
void Node::set_misc_max(int i)
{
misc_max = i;
}
int Node::get_misc() const
{
return misc_index;
}
bool Node::increment_misc()
{
return (misc_index < misc_max) && ((++misc_index) < misc_max);
}
bool Node::misc_empty() const
{
return (misc_index + 1) >= misc_max;
}
bool Node::is_enabled(Thread *t) const
{
int thread_id = id_to_int(t->get_id());
return thread_id < num_threads && (enabled_array[thread_id] != THREAD_DISABLED);
}
enabled_type_t Node::enabled_status(thread_id_t tid) const
{
int thread_id = id_to_int(tid);
if (thread_id < num_threads)
return enabled_array[thread_id];
else
return THREAD_DISABLED;
}
bool Node::is_enabled(thread_id_t tid) const
{
int thread_id = id_to_int(tid);
return thread_id < num_threads && (enabled_array[thread_id] != THREAD_DISABLED);
}
bool Node::has_priority(thread_id_t tid) const
{
return fairness[id_to_int(tid)].priority;
}
bool Node::has_priority_over(thread_id_t tid1, thread_id_t tid2) const
{
return get_yield_data(id_to_int(tid1), id_to_int(tid2)) & YIELD_P;
}
/*********************************** read from ********************************/
/**
* Get the current state of the may-read-from set iteration
* @return The read-from type we should currently be checking (past or future)
*/
read_from_type_t Node::get_read_from_status()
{
if (read_from_status == READ_FROM_PAST && read_from_past.empty())
increment_read_from();
return read_from_status;
}
/**
* Iterate one step in the may-read-from iteration. This includes a step in
* reading from the either the past or the future.
* @return True if there is a new read-from to explore; false otherwise
*/
bool Node::increment_read_from()
{
clear_promise_resolutions();
if (increment_read_from_past()) {
read_from_status = READ_FROM_PAST;
return true;
} else if (increment_read_from_promise()) {
read_from_status = READ_FROM_PROMISE;
return true;
} else if (increment_future_value()) {
read_from_status = READ_FROM_FUTURE;
return true;
}
read_from_status = READ_FROM_NONE;
return false;
}
/**
* @return True if there are any new read-froms to explore
*/
bool Node::read_from_empty() const
{
return read_from_past_empty() &&
read_from_promise_empty() &&
future_value_empty();
}
/**
* Get the total size of the may-read-from set, including both past and future
* values
* @return The size of may-read-from
*/
unsigned int Node::read_from_size() const
{
return read_from_past.size() +
read_from_promises.size() +
future_values.size();
}
/******************************* end read from ********************************/
/****************************** read from past ********************************/
/** @brief Prints info about read_from_past set */
void Node::print_read_from_past()
{
for (unsigned int i = 0; i < read_from_past.size(); i++)
read_from_past[i]->print();
}
/**
* Add an action to the read_from_past set.
* @param act is the action to add
*/
void Node::add_read_from_past(const ModelAction *act)
{
read_from_past.push_back(act);
}
/**
* Gets the next 'read_from_past' action from this Node. Only valid for a node
* where this->action is a 'read'.
* @return The first element in read_from_past
*/
const ModelAction * Node::get_read_from_past() const
{
if (read_from_past_idx < read_from_past.size())
return read_from_past[read_from_past_idx];
else
return NULL;
}
const ModelAction * Node::get_read_from_past(int i) const
{
return read_from_past[i];
}
int Node::get_read_from_past_size() const
{
return read_from_past.size();
}
/**
* Checks whether the readsfrom set for this node is empty.
* @return true if the readsfrom set is empty.
*/
bool Node::read_from_past_empty() const
{
return ((read_from_past_idx + 1) >= read_from_past.size());
}
/**
* Increments the index into the readsfrom set to explore the next item.
* @return Returns false if we have explored all items.
*/
bool Node::increment_read_from_past()
{
DBG();
if (read_from_past_idx < read_from_past.size()) {
read_from_past_idx++;
return read_from_past_idx < read_from_past.size();
}
return false;
}
/************************** end read from past ********************************/
/***************************** read_from_promises *****************************/
/**
* Add an action to the read_from_promises set.
* @param reader The read which generated the Promise; we use the ModelAction
* instead of the Promise because the Promise does not last across executions
*/
void Node::add_read_from_promise(const ModelAction *reader)
{
read_from_promises.push_back(reader);
}
/**
* Gets the next 'read-from-promise' from this Node. Only valid for a node
* where this->action is a 'read'.
* @return The current element in read_from_promises
*/
Promise * Node::get_read_from_promise() const
{
ASSERT(read_from_promise_idx >= 0 && read_from_promise_idx < ((int)read_from_promises.size()));
return read_from_promises[read_from_promise_idx]->get_reads_from_promise();
}
/**
* Gets a particular 'read-from-promise' form this Node. Only vlaid for a node
* where this->action is a 'read'.
* @param i The index of the Promise to get
* @return The Promise at index i, if the Promise is still available; NULL
* otherwise
*/
Promise * Node::get_read_from_promise(int i) const
{
return read_from_promises[i]->get_reads_from_promise();
}
/** @return The size of the read-from-promise set */
int Node::get_read_from_promise_size() const
{
return read_from_promises.size();
}
/**
* Checks whether the read_from_promises set for this node is empty.
* @return true if the read_from_promises set is empty.
*/
bool Node::read_from_promise_empty() const
{
return ((read_from_promise_idx + 1) >= ((int)read_from_promises.size()));
}
/**
* Increments the index into the read_from_promises set to explore the next item.
* @return Returns false if we have explored all promises.
*/
bool Node::increment_read_from_promise()
{
DBG();
if (read_from_promise_idx < ((int)read_from_promises.size())) {
read_from_promise_idx++;
return (read_from_promise_idx < ((int)read_from_promises.size()));
}
return false;
}
/************************* end read_from_promises *****************************/
/****************************** future values *********************************/
/**
* Adds a value from a weakly ordered future write to backtrack to. This
* operation may "fail" if the future value has already been run (within some
* sloppiness window of this expiration), or if the futurevalues set has
* reached its maximum.
* @see model_params.maxfuturevalues
*
* @param value is the value to backtrack to.
* @return True if the future value was successully added; false otherwise
*/
bool Node::add_future_value(struct future_value fv)
{
uint64_t value = fv.value;
modelclock_t expiration = fv.expiration;
thread_id_t tid = fv.tid;
int idx = -1; /* Highest index where value is found */
for (unsigned int i = 0; i < future_values.size(); i++) {
if (future_values[i].value == value && future_values[i].tid == tid) {
if (expiration <= future_values[i].expiration)
return false;
idx = i;
}
}
if (idx > future_index) {
/* Future value hasn't been explored; update expiration */
future_values[idx].expiration = expiration;
return true;
} else if (idx >= 0 && expiration <= future_values[idx].expiration + get_params()->expireslop) {
/* Future value has been explored and is within the "sloppy" window */
return false;
}
/* Limit the size of the future-values set */
if (get_params()->maxfuturevalues > 0 &&
(int)future_values.size() >= get_params()->maxfuturevalues)
return false;
future_values.push_back(fv);
return true;
}
/**
* Gets the next 'future_value' from this Node. Only valid for a node where
* this->action is a 'read'.
* @return The first element in future_values
*/
struct future_value Node::get_future_value() const
{
ASSERT(future_index >= 0 && future_index < ((int)future_values.size()));
return future_values[future_index];
}
/**
* Checks whether the future_values set for this node is empty.
* @return true if the future_values set is empty.
*/
bool Node::future_value_empty() const
{
return ((future_index + 1) >= ((int)future_values.size()));
}
/**
* Increments the index into the future_values set to explore the next item.
* @return Returns false if we have explored all values.
*/
bool Node::increment_future_value()
{
DBG();
if (future_index < ((int)future_values.size())) {
future_index++;
return (future_index < ((int)future_values.size()));
}
return false;
}
/************************** end future values *********************************/
/*********************** breaking release sequences ***************************/
/**
* Add a write ModelAction to the set of writes that may break the release
* sequence. This is used during replay exploration of pending release
* sequences. This Node must correspond to a release sequence fixup action.
*
* @param write The write that may break the release sequence. NULL means we
* allow the release sequence to synchronize.
*/
void Node::add_relseq_break(const ModelAction *write)
{
relseq_break_writes.push_back(write);
}
/**
* Get the write that may break the current pending release sequence,
* according to the replay / divergence pattern.
*
* @return A write that may break the release sequence. If NULL, that means
* the release sequence should not be broken.
*/
const ModelAction * Node::get_relseq_break() const
{
if (relseq_break_index < (int)relseq_break_writes.size())
return relseq_break_writes[relseq_break_index];
else
return NULL;
}
/**
* Increments the index into the relseq_break_writes set to explore the next
* item.
* @return Returns false if we have explored all values.
*/
bool Node::increment_relseq_break()
{
DBG();
if (relseq_break_index < ((int)relseq_break_writes.size())) {
relseq_break_index++;
return (relseq_break_index < ((int)relseq_break_writes.size()));
}
return false;
}
/**
* @return True if all writes that may break the release sequence have been
* explored
*/
bool Node::relseq_break_empty() const
{
return ((relseq_break_index + 1) >= ((int)relseq_break_writes.size()));
}
/******************* end breaking release sequences ***************************/
/**
* Increments some behavior's index, if a new behavior is available
* @return True if there is a new behavior available; otherwise false
*/
bool Node::increment_behaviors()
{
/* satisfy a different misc_index values */
if (increment_misc())
return true;
/* satisfy a different set of promises */
if (increment_promise())
return true;
/* read from a different value */
if (increment_read_from())
return true;
/* resolve a release sequence differently */
if (increment_relseq_break())
return true;
return false;
}
NodeStack::NodeStack() :
node_list(),
head_idx(-1),
total_nodes(0)
{
total_nodes++;
}
NodeStack::~NodeStack()
{
for (unsigned int i = 0; i < node_list.size(); i++)
delete node_list[i];
}
/**
* @brief Register the model-checker object with this NodeStack
* @param exec The execution structure for the ModelChecker
*/
void NodeStack::register_engine(const ModelExecution *exec)
{
this->execution = exec;
}
const struct model_params * NodeStack::get_params() const
{
return execution->get_params();
}
void NodeStack::print() const
{
model_print("............................................\n");
model_print("NodeStack printing node_list:\n");
for (unsigned int it = 0; it < node_list.size(); it++) {
if ((int)it == this->head_idx)
model_print("vvv following action is the current iterator vvv\n");
node_list[it]->print();
}
model_print("............................................\n");
}
/** Note: The is_enabled set contains what actions were enabled when
* act was chosen. */
ModelAction * NodeStack::explore_action(ModelAction *act, enabled_type_t *is_enabled)
{
DBG();
if ((head_idx + 1) < (int)node_list.size()) {
head_idx++;
return node_list[head_idx]->get_action();
}
/* Record action */
Node *head = get_head();
Node *prevfairness = NULL;
if (head) {
head->explore_child(act, is_enabled);
if (get_params()->fairwindow != 0 && head_idx > (int)get_params()->fairwindow)
prevfairness = node_list[head_idx - get_params()->fairwindow];
}
int next_threads = execution->get_num_threads();
if (act->get_type() == THREAD_CREATE)
next_threads++;
node_list.push_back(new Node(get_params(), act, head, next_threads, prevfairness));
total_nodes++;
head_idx++;
return NULL;
}
/**
* Empties the stack of all trailing nodes after a given position and calls the
* destructor for each. This function is provided an offset which determines
* how many nodes (relative to the current replay state) to save before popping
* the stack.
* @param numAhead gives the number of Nodes (including this Node) to skip over
* before removing nodes.
*/
void NodeStack::pop_restofstack(int numAhead)
{
/* Diverging from previous execution; clear out remainder of list */
unsigned int it = head_idx + numAhead;
for (unsigned int i = it; i < node_list.size(); i++)
delete node_list[i];
node_list.resize(it);
node_list.back()->clear_backtracking();
}
Node * NodeStack::get_head() const
{
if (node_list.empty() || head_idx < 0)
return NULL;
return node_list[head_idx];
}
Node * NodeStack::get_next() const
{
if (node_list.empty()) {
DEBUG("Empty\n");
return NULL;
}
unsigned int it = head_idx + 1;
if (it == node_list.size()) {
DEBUG("At end\n");
return NULL;
}
return node_list[it];
}
void NodeStack::reset_execution()
{
head_idx = -1;
}