This repository has been archived by the owner on Jun 1, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
qsturng.py
688 lines (615 loc) · 46.1 KB
/
qsturng.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
# Copyright (c) 2011, Roger Lew [see LICENSE.txt]
# This software is funded in part by NIH Grant P20 RR016454.
"""
Implementation of Gleason's (1999) non-iterative upper quantile
studentized range approximation.
According to Gleason this method should be more accurate than the
AS190 FORTRAN algorithm of Lund and Lund (1983) and works from .5
<= p <= .999 (The AS190 only works from .9 <= p <= .99).
It is more efficient then the Copenhaver & Holland (1988) algorithm
(used by the _qtukey_ R function) although it requires storing the A
table in memory. (q distribution) approximations in Python.
see:
Gleason, J. R. (1999). An accurate, non-iterative approximation
for studentized range quantiles. Computational Statistics &
Data Analysis, (31), 147-158.
Gleason, J. R. (1998). A table of quantile points of the
Studentized range distribution.
http://www.stata.com/stb/stb46/dm64/sturng.pdf
"""
import math
import scipy.stats
import numpy as np
inf = float('inf')
__version__ = '0.2.1'
# changelog
# 0.1 - initial release
# 0.1.1 - vectorized
# 0.2 - psturng added
# 0.2.1 - T, R generation script relegated to make_tbls.py
# Gleason's table was derived using least square estimation on the tabled
# r values for combinations of p and v. In total there are 206
# estimates over p-values of .5, .75, .9, .95, .975, .99, .995,
# and .999, and over v (degrees of freedom) of (1) - 20, 24, 30, 40,
# 60, 120, and inf. combinations with p < .95 don't have coefficients
# for v = 1. Hence the parentheses. These coefficients allow us to
# form f-hat. f-hat with the inverse t transform of tinv(p,v) yields
# a fairly accurate estimate of the studentized range distribution
# across a wide range of values. According to Gleason this method
# should be more accurate than algorithm AS190 of Lund and Lund (1983)
# and work across a wider range of values (The AS190 only works
# from .9 <= p <= .99). R's qtukey algorithm was used to add tables
# at .675, .8, and .85. These aid approximations when p < .9.
#
# The code that generated this table is called make_tbls.py and is
# located in version control.
A = {(0.1, 2.0): [-2.2485085243379075, -1.5641014278923464, 0.55942294426816752, -0.060006608853883377],
(0.1, 3.0): [-2.2061105943901564, -1.8415406600571855, 0.61880788039834955, -0.062217093661209831],
(0.1, 4.0): [-2.1686691786678178, -2.008196172372553, 0.65010084431947401, -0.06289005500114471],
(0.1, 5.0): [-2.145077200277393, -2.112454843879346, 0.66701240582821342, -0.062993502233654797],
(0.1, 6.0): [-2.0896098049743155, -2.2400004934286497, 0.70088523391700142, -0.065907568563272748],
(0.1, 7.0): [-2.0689296655661584, -2.3078445479584873, 0.71577374609418909, -0.067081034249350552],
(0.1, 8.0): [-2.0064956480711262, -2.437400413087452, 0.76297532367415266, -0.072805518121505458],
(0.1, 9.0): [-2.3269477513436061, -2.0469494712773089, 0.60662518717720593, -0.054887108437009016],
(0.1, 10.0): [-2.514024350177229, -1.8261187841127482, 0.51674358077906746, -0.044590425150963633],
(0.1, 11.0): [-2.5130181309130828, -1.8371718595995694, 0.51336701694862252, -0.043761825829092445],
(0.1, 12.0): [-2.5203508109278823, -1.8355687130611862, 0.5063486549107169, -0.042646205063108261],
(0.1, 13.0): [-2.5142536438310477, -1.8496969402776282, 0.50616991367764153, -0.042378379905665363],
(0.1, 14.0): [-2.3924634153781352, -2.013859173066078, 0.56421893251638688, -0.048716888109540266],
(0.1, 15.0): [-2.3573552940582574, -2.0576676976224362, 0.57424068771143233, -0.049367487649225841],
(0.1, 16.0): [-2.3046427483044871, -2.1295959138627993, 0.59778272657680553, -0.051864829216301617],
(0.1, 17.0): [-2.2230551072316125, -2.2472837435427127, 0.64255758243215211, -0.057186665209197643],
(0.1, 18.0): [-2.3912859179716897, -2.0350604070641269, 0.55924788749333332, -0.047729331835226464],
(0.1, 19.0): [-2.4169773092220623, -2.0048217969339146, 0.54493039319748915, -0.045991241346224065],
(0.1, 20.0): [-2.4264087194660751, -1.9916614057049267, 0.53583555139648154, -0.04463049934517662],
(0.1, 24.0): [-2.3969903132061869, -2.0252941869225345, 0.53428382141200137, -0.043116495567779786],
(0.1, 30.0): [-2.2509922780354623, -2.2309248956124894, 0.60748041324937263, -0.051427415888817322],
(0.1, 40.0): [-2.1310090183854946, -2.3908466074610564, 0.65844375382323217, -0.05676653804036895],
(0.1, 60.0): [-1.9240060179027036, -2.6685751031012233, 0.75678826647453024, -0.067938584352398995],
(0.1, 120.0): [-1.9814895487030182, -2.5962051736978373, 0.71793969041292693, -0.063126863201511618],
(0.1, inf): [-1.913410267066703, -2.6947367328724732, 0.74742335122750592, -0.06660897234304515],
(0.5, 2.0): [-0.88295935738770648, -0.1083576698911433, 0.035214966839394388, -0.0028576288978276461],
(0.5, 3.0): [-0.89085829205846834, -0.10255696422201063, 0.033613638666631696, -0.0027101699918520737],
(0.5, 4.0): [-0.89627345339338116, -0.099072524607668286, 0.032657774808907684, -0.0026219007698204916],
(0.5, 5.0): [-0.89959145511941052, -0.097272836582026817, 0.032236187675182958, -0.0025911555217019663],
(0.5, 6.0): [-0.89959428735702474, -0.098176292411106647, 0.032590766960226995, -0.0026319890073613164],
(0.5, 7.0): [-0.90131491102863937, -0.097135907620296544, 0.032304124993269533, -0.0026057965808244125],
(0.5, 8.0): [-0.90292500599432901, -0.096047500971337962, 0.032030946615574568, -0.0025848748659053891],
(0.5, 9.0): [-0.90385598607803697, -0.095390771554571888, 0.031832651111105899, -0.0025656060219315991],
(0.5, 10.0): [-0.90562524936125388, -0.093954488089771915, 0.031414451048323286, -0.0025257834705432031],
(0.5, 11.0): [-0.90420347371173826, -0.095851656370277288, 0.0321150356209743, -0.0026055056400093451],
(0.5, 12.0): [-0.90585973471757664, -0.094449306296728028, 0.031705945923210958, -0.0025673330195780191],
(0.5, 13.0): [-0.90555437067293054, -0.094792991050780248, 0.031826594964571089, -0.0025807109129488545],
(0.5, 14.0): [-0.90652756604388762, -0.093792156994564738, 0.031468966328889042, -0.0025395175361083741],
(0.5, 15.0): [-0.90642323700400085, -0.094173017520487984, 0.031657517378893905, -0.0025659271829033877],
(0.5, 16.0): [-0.90716338636685234, -0.093785178083820434, 0.031630091949657997, -0.0025701459247416637],
(0.5, 17.0): [-0.90790133816769714, -0.093001147638638884, 0.031376863944487084, -0.002545143621663892],
(0.5, 18.0): [-0.9077432927051563, -0.093343516378180599, 0.031518139662395313, -0.0025613906133277178],
(0.5, 19.0): [-0.90789499456490286, -0.09316964789456067, 0.031440782366342901, -0.0025498353345867453],
(0.5, 20.0): [-0.90842707861030725, -0.092696016476608592, 0.031296040311388329, -0.0025346963982742186],
(0.5, 24.0): [-0.9083281347135469, -0.092959308144970776, 0.031464063190077093, -0.0025611384271086285],
(0.5, 30.0): [-0.90857624050016828, -0.093043139391980514, 0.031578791729341332, -0.0025766595412777147],
(0.5, 40.0): [-0.91034085045438684, -0.091978035738914568, 0.031451631000052639, -0.0025791418103733297],
(0.5, 60.0): [-0.91084356681030032, -0.091452675572423425, 0.031333147984820044, -0.0025669786958144843],
(0.5, 120.0): [-0.90963649561463833, -0.093414563261352349, 0.032215602703677425, -0.0026704024780441257],
(0.5, inf): [-0.91077157500981665, -0.092899220350334571, 0.032230422399363315, -0.0026696941964372916],
(0.675, 2.0): [-0.67231521026565144, -0.097083624030663451, 0.027991378901661649, -0.0021425184069845558],
(0.675, 3.0): [-0.65661724764645824, -0.08147195494632696, 0.02345732427073333, -0.0017448570400999351],
(0.675, 4.0): [-0.65045677697461124, -0.071419073399450431, 0.020741962576852499, -0.0015171262565892491],
(0.675, 5.0): [-0.64718875357808325, -0.064720611425218344, 0.019053450246546449, -0.0013836232986228711],
(0.675, 6.0): [-0.64523003702018655, -0.059926313672731824, 0.017918997181483924, -0.0012992250285556828],
(0.675, 7.0): [-0.64403313148478836, -0.056248191513784476, 0.017091446791293721, -0.0012406558789511822],
(0.675, 8.0): [-0.64325095865764359, -0.053352543126426684, 0.016471879286491072, -0.0011991839050964099],
(0.675, 9.0): [-0.64271152754911653, -0.051023769620449078, 0.01599799600547195, -0.0011693637984597086],
(0.675, 10.0): [-0.64232244408502626, -0.049118327462884373, 0.015629704966568955, -0.0011477775513952285],
(0.675, 11.0): [-0.64203897854353564, -0.047524627960277892, 0.015334801262767227, -0.0011315057284007177],
(0.675, 12.0): [-0.64180344973512771, -0.046205907576003291, 0.015108290595438166, -0.0011207364514518488],
(0.675, 13.0): [-0.64162086456823342, -0.045076099336874231, 0.0149226565346125, -0.0011126140690497352],
(0.675, 14.0): [-0.64146906480198984, -0.044108523550512715, 0.014772954218646743, -0.0011069708562369386],
(0.675, 15.0): [-0.64133915151966603, -0.043273370927039825, 0.014651691599222836, -0.0011032216539514398],
(0.675, 16.0): [-0.64123237842752079, -0.042538925012463868, 0.014549992487506169, -0.0011005633864334021],
(0.675, 17.0): [-0.64113034037536609, -0.041905699463005854, 0.014470805560767184, -0.0010995286436738471],
(0.675, 18.0): [-0.64104137391561256, -0.041343885546229336, 0.014404563657113593, -0.0010991304223377683],
(0.675, 19.0): [-0.64096064882827297, -0.04084569291139839, 0.014350159655133801, -0.0010993656711121901],
(0.675, 20.0): [-0.64088647405089572, -0.040402175957178085, 0.014305769823654429, -0.0011001304776712105],
(0.675, 24.0): [-0.64063763965937837, -0.039034716348048545, 0.014196703837251648, -0.0011061961945598175],
(0.675, 30.0): [-0.64034987716294889, -0.037749651156941719, 0.014147040999127263, -0.0011188251352919833],
(0.675, 40.0): [-0.6399990514713938, -0.036583307574857803, 0.014172070700846548, -0.0011391004138624943],
(0.675, 60.0): [-0.63955586202430248, -0.035576938958184395, 0.014287299153378865, -0.0011675811805794236],
(0.675, 120.0): [-0.63899242674778622, -0.034763757512388853, 0.014500726912982405, -0.0012028491454427466],
(0.675, inf): [-0.63832682579247613, -0.034101476695520404, 0.014780921043580184, -0.0012366204114216408],
(0.75, 2.0): [-0.60684073638504454, -0.096375192078057031, 0.026567529471304554, -0.0019963228971914488],
(0.75, 3.0): [-0.57986144519102656, -0.078570292718034881, 0.021280637925009449, -0.0015329306898533772],
(0.75, 4.0): [-0.56820771686193594, -0.0668113563896649, 0.018065284051059189, -0.0012641485481533648],
(0.75, 5.0): [-0.56175292435740221, -0.058864526929603825, 0.016046735025708799, -0.0011052560286524044],
(0.75, 6.0): [-0.55773449282066356, -0.053136923269827351, 0.014684258167069347, -0.0010042826823561605],
(0.75, 7.0): [-0.55509524598867332, -0.048752649191139405, 0.013696566605823626, -0.00093482210003133898],
(0.75, 8.0): [-0.55324993686191515, -0.045305558708724644, 0.012959681992062138, -0.00088583541601696021],
(0.75, 9.0): [-0.55189259054026196, -0.042539819902381634, 0.012398791106424769, -0.00085083962241435827],
(0.75, 10.0): [-0.55085384656956893, -0.040281425755686585, 0.01196442242722482, -0.00082560322161492677],
(0.75, 11.0): [-0.55003198103541273, -0.038410176100193948, 0.011623294239447784, -0.00080732975034320073],
(0.75, 12.0): [-0.54936541596319177, -0.036838543267887103, 0.011351822637895701, -0.0007940703654926442],
(0.75, 13.0): [-0.54881015972753833, -0.035506710625568455, 0.011134691307865171, -0.0007846360016355809],
(0.75, 14.0): [-0.54834094346071949, -0.034364790609906569, 0.010958873929274728, -0.00077796645357008291],
(0.75, 15.0): [-0.54793602418304255, -0.033379237455748029, 0.010816140998057593, -0.00077344175064785099],
(0.75, 16.0): [-0.54758347689728037, -0.032520569145898917, 0.010699240399358219, -0.00077050847328596678],
(0.75, 17.0): [-0.54727115963795303, -0.031769277192927527, 0.010603749751170481, -0.0007688642392748113],
(0.75, 18.0): [-0.54699351808826535, -0.031105476267880995, 0.010524669113016114, -0.00076810656837464093],
(0.75, 19.0): [-0.54674357626419079, -0.030516967201954001, 0.010459478822937069, -0.00076808652582440037],
(0.75, 20.0): [-0.54651728378950126, -0.029992319199769232, 0.010405694998386575, -0.0007686417223966138],
(0.75, 24.0): [-0.54578309546828363, -0.028372628574010936, 0.010269939602271542, -0.00077427370647261838],
(0.75, 30.0): [-0.54501246434397554, -0.026834887880579802, 0.010195603314317611, -0.00078648615954105515],
(0.75, 40.0): [-0.54418127442022624, -0.025413224488871379, 0.010196455193836855, -0.00080610785749523739],
(0.75, 60.0): [-0.543265189207915, -0.024141961069146383, 0.010285001019536088, -0.00083332193364294587],
(0.75, 120.0): [-0.54224757817994806, -0.023039071833948214, 0.010463365295636302, -0.00086612828539477918],
(0.75, inf): [-0.54114579815367159, -0.02206592527426093, 0.01070374099737127, -0.00089726564005122183],
(0.8, 2.0): [-0.56895274046831146, -0.096326255190541957, 0.025815915364208686, -0.0019136561019354845],
(0.8, 3.0): [-0.5336038380862278, -0.077585191014876181, 0.020184759265389905, -0.0014242746007323785],
(0.8, 4.0): [-0.51780274285934258, -0.064987738443608709, 0.016713309796866204, -0.001135379856633562],
(0.8, 5.0): [-0.50894361222268403, -0.056379186603362705, 0.014511270339773345, -0.00096225604117493205],
(0.8, 6.0): [-0.50335153028630408, -0.050168860294790812, 0.01302807093593626, -0.00085269812692536306],
(0.8, 7.0): [-0.49960934380896432, -0.045417333787806033, 0.011955593330247398, -0.00077759605604250882],
(0.8, 8.0): [-0.49694518248979763, -0.041689151516021969, 0.011158986677273709, -0.00072497430103953366],
(0.8, 9.0): [-0.4949559974898507, -0.038702217132906024, 0.010554360004521268, -0.0006875213117164109],
(0.8, 10.0): [-0.49341407910162483, -0.036266788741325398, 0.010087354421936092, -0.00066060835062865602],
(0.8, 11.0): [-0.49218129312493897, -0.034252403643273498, 0.0097218584838579536, -0.00064123459335201907],
(0.8, 12.0): [-0.49117223957112183, -0.032563269730499021, 0.0094318583096021404, -0.00062725253852419032],
(0.8, 13.0): [-0.49032781145131277, -0.031132495018324432, 0.0091999762562792898, -0.0006172944366003854],
(0.8, 14.0): [-0.48961049628464259, -0.029906921170494854, 0.009012451847823854, -0.00061026211968669543],
(0.8, 15.0): [-0.48899069793054922, -0.028849609914548158, 0.0088602820002619594, -0.00060548991575179055],
(0.8, 16.0): [-0.48844921216636505, -0.027929790075266154, 0.00873599263877896, -0.00060242119796859379],
(0.8, 17.0): [-0.48797119683309537, -0.027123634910159868, 0.0086338139869481887, -0.00060061821593399998],
(0.8, 18.0): [-0.48754596864745836, -0.026411968723496961, 0.0085493196604705755, -0.00059977083160833624],
(0.8, 19.0): [-0.48716341805691843, -0.025781422230819986, 0.0084796655915025769, -0.00059970031758323466],
(0.8, 20.0): [-0.48681739197185547, -0.025219629852198749, 0.0084221844254287765, -0.00060023212822886711],
(0.8, 24.0): [-0.48570639629281365, -0.023480608772518948, 0.008274490561114187, -0.000605681105792215],
(0.8, 30.0): [-0.48455867067770253, -0.021824655071720423, 0.0081888502974720567, -0.00061762126933785633],
(0.8, 40.0): [-0.48335478729267423, -0.020279958998363389, 0.0081765095914194709, -0.00063657117129829635],
(0.8, 60.0): [-0.48207351944996679, -0.018875344346672228, 0.0082473997191472338, -0.00066242478479277243],
(0.8, 120.0): [-0.48070356185330182, -0.017621686995755746, 0.0084009638803223801, -0.00069300383808949318],
(0.8, inf): [-0.47926687718713606, -0.016476575352367202, 0.0086097059646591811, -0.00072160843492730911],
(0.85, 2.0): [-0.53366806986381743, -0.098288178252723263, 0.026002333446289064, -0.0019567144268844896],
(0.85, 3.0): [-0.48995919239619989, -0.077312722648418056, 0.019368984865418108, -0.0013449670192265796],
(0.85, 4.0): [-0.46956079162382858, -0.063818518513946695, 0.015581608910696544, -0.0010264315084377606],
(0.85, 5.0): [-0.45790853796153624, -0.054680511194530226, 0.013229852432203093, -0.00084248430847535898],
(0.85, 6.0): [-0.4505070841695738, -0.048050936682873302, 0.011636407582714191, -0.00072491480033529815],
(0.85, 7.0): [-0.44548337477336181, -0.042996612516383016, 0.010493052959891263, -0.00064528784792153239],
(0.85, 8.0): [-0.44186624932664148, -0.039040005821657585, 0.0096479530794160544, -0.00058990874360967567],
(0.85, 9.0): [-0.43914118689812259, -0.035875693030752713, 0.0090088804130628187, -0.00055071480339399694],
(0.85, 10.0): [-0.43701255390953769, -0.033300997407157376, 0.0085172159355344848, -0.00052272770799695464],
(0.85, 11.0): [-0.43530109064899053, -0.031174742038490313, 0.0081335619868386066, -0.00050268353809787927],
(0.85, 12.0): [-0.43389220376610071, -0.02939618314990838, 0.007830626267772851, -0.00048836431712678222],
(0.85, 13.0): [-0.43271026958463166, -0.027890759135246888, 0.0075886916668632936, -0.00047819339710596971],
(0.85, 14.0): [-0.43170230265007209, -0.026604156062396189, 0.0073939099688705547, -0.00047109996854335419],
(0.85, 15.0): [-0.43083160459377423, -0.025494228911600785, 0.0072358738657550868, -0.00046630677052262481],
(0.85, 16.0): [-0.4300699280587239, -0.024529612608808794, 0.0071069227026219683, -0.00046323869860941791],
(0.85, 17.0): [-0.42939734931902857, -0.023685025616054269, 0.0070011541609695891, -0.00046147954942994158],
(0.85, 18.0): [-0.42879829041505324, -0.022940655682782165, 0.006914006369119409, -0.00046070877994711774],
(0.85, 19.0): [-0.42826119448419875, -0.022280181781634649, 0.0068417746905826433, -0.00046066841214091982],
(0.85, 20.0): [-0.42777654887094479, -0.021690909076747832, 0.0067817408643717969, -0.00046118620289068032],
(0.85, 24.0): [-0.42622450033640852, -0.019869646711890065, 0.0066276799593494029, -0.00046668820637553747],
(0.85, 30.0): [-0.42463810443233418, -0.018130114737381745, 0.0065344613060499164, -0.00047835583417510423],
(0.85, 40.0): [-0.42299917804589382, -0.016498222901308417, 0.0065120558343578407, -0.00049656043685325469],
(0.85, 60.0): [-0.42129387265810464, -0.014992121475265813, 0.0065657795990087635, -0.00052069705640687698],
(0.85, 120.0): [-0.41951580476366368, -0.013615722489371183, 0.0066923911275726814, -0.00054846911649167492],
(0.85, inf): [-0.41768751825428968, -0.012327525092266726, 0.0068664920569562592, -0.00057403720261753539],
(0.9, 1.0): [-0.65851063279096722, -0.126716242078905, 0.036318801917603061, -0.002901283222928193],
(0.9, 2.0): [-0.50391945369829139, -0.096996108021146235, 0.024726437623473398, -0.0017901399938303017],
(0.9, 3.0): [-0.44799791843058734, -0.077180370333307199, 0.018584042055594469, -0.0012647038118363408],
(0.9, 4.0): [-0.42164091756145167, -0.063427071006287514, 0.014732203755741392, -0.00094904174117957688],
(0.9, 5.0): [-0.40686856251221754, -0.053361940054842398, 0.012041802076025801, -0.00072960198292410612],
(0.9, 6.0): [-0.39669926026535285, -0.046951517438004242, 0.010546647213094956, -0.00062621198002366064],
(0.9, 7.0): [-0.39006553675807426, -0.04169480606532109, 0.0093687546601737195, -0.00054648695713273862],
(0.9, 8.0): [-0.38570205067061908, -0.037083910859179794, 0.0083233218526375836, -0.00047177586974035451],
(0.9, 9.0): [-0.38190737267892938, -0.034004585655388865, 0.0077531991574119183, -0.00044306547308527872],
(0.9, 10.0): [-0.37893272918125737, -0.031394677600916979, 0.0072596802503533536, -0.0004160518834299966],
(0.9, 11.0): [-0.37692512492705132, -0.028780793403136471, 0.0066937909049060379, -0.00037420010136784526],
(0.9, 12.0): [-0.37506345200129187, -0.026956483290567372, 0.0064147730707776523, -0.00036595383207062906],
(0.9, 13.0): [-0.37339516122383209, -0.02543949524844704, 0.0061760656530197187, -0.00035678737379179527],
(0.9, 14.0): [-0.37216979891087842, -0.02396347606956644, 0.0059263234465969641, -0.0003439784452550796],
(0.9, 15.0): [-0.371209456600122, -0.022696132732654414, 0.0057521677184623147, -0.00033961108561770848],
(0.9, 16.0): [-0.36958924377983338, -0.022227885445863002, 0.0057691706799383926, -0.00035042762538099682],
(0.9, 17.0): [-0.36884224719083203, -0.021146977888668726, 0.0055957928269732716, -0.00034283810412697531],
(0.9, 18.0): [-0.36803087186793326, -0.020337731477576542, 0.0054655378095212759, -0.00033452966946535248],
(0.9, 19.0): [-0.3676700404163355, -0.019370115848857467, 0.0053249296207149655, -0.00032975528909580403],
(0.9, 20.0): [-0.36642276267188811, -0.019344251412284838, 0.0054454968582897528, -0.00034868111677540948],
(0.9, 24.0): [-0.36450650753755193, -0.017284255499990679, 0.0052337500059176749, -0.00034898202845747288],
(0.9, 30.0): [-0.36251868940168608, -0.015358560437631397, 0.0050914299956134786, -0.00035574528891633978],
(0.9, 40.0): [-0.36008886676510943, -0.014016835682905486, 0.0051930835959111514, -0.00038798316011984165],
(0.9, 60.0): [-0.35825590690268061, -0.011991568926537646, 0.0050632208542414191, -0.00039090198974493085],
(0.9, 120.0): [-0.35543612237284411, -0.011074403997811812, 0.0053504570752765162, -0.00043647137428074178],
(0.9, inf): [-0.35311806343057167, -0.0096254020092145353, 0.0054548591208177181, -0.00045343916634968493],
(0.95, 1.0): [-0.65330318136020071, -0.12638310760474375, 0.035987535130769424, -0.0028562665467665315],
(0.95, 2.0): [-0.47225160417826934, -0.10182570362271424, 0.025846563499059158, -0.0019096769058043243],
(0.95, 3.0): [-0.4056635555586528, -0.077067172693350297, 0.017789909647225533, -0.001182961668735774],
(0.95, 4.0): [-0.37041675177340955, -0.063815687118939465, 0.014115210247737845, -0.00089996098435117598],
(0.95, 5.0): [-0.35152398291152309, -0.052156502640669317, 0.010753738086401853, -0.0005986841939451575],
(0.95, 6.0): [-0.33806730015201264, -0.045668399809578597, 0.0093168898952878162, -0.00051369719615782102],
(0.95, 7.0): [-0.32924041072104465, -0.040019601775490091, 0.0080051199552865163, -0.00042054536135868043],
(0.95, 8.0): [-0.32289030266989077, -0.035575345931670443, 0.0070509089344694669, -0.00035980773304803576],
(0.95, 9.0): [-0.31767304201477375, -0.032464945930165703, 0.0064755950437272143, -0.0003316676253661824],
(0.95, 10.0): [-0.31424318064708656, -0.029133461621153, 0.0057437449431074795, -0.00027894252261209191],
(0.95, 11.0): [-0.31113589620384974, -0.02685115250591049, 0.0053517905282942889, -0.00026155954116874666],
(0.95, 12.0): [-0.30848983612414582, -0.025043238019239168, 0.0050661675913488829, -0.00025017202909614005],
(0.95, 13.0): [-0.3059212907410393, -0.023863874699213077, 0.0049618051135807322, -0.00025665425781125703],
(0.95, 14.0): [-0.30449676902720035, -0.021983976741572344, 0.0045740513735751968, -0.00022881166323945914],
(0.95, 15.0): [-0.30264908294481396, -0.02104880307520084, 0.0044866571614804382, -0.00023187587597844057],
(0.95, 16.0): [-0.30118294463097917, -0.020160231061926728, 0.0044170780759056859, -0.00023733502359045826],
(0.95, 17.0): [-0.30020013353427744, -0.018959271614471574, 0.0041925333038202285, -0.00022274025630789767],
(0.95, 18.0): [-0.29857886556874402, -0.018664437456802001, 0.0042557787632833697, -0.00023758868868853716],
(0.95, 19.0): [-0.29796289236978263, -0.017632218552317589, 0.0040792779937959866, -0.00022753271474613109],
(0.95, 20.0): [-0.29681506554838077, -0.017302563243037392, 0.0041188426221428964, -0.00023913038468772782],
(0.95, 24.0): [-0.29403146911167666, -0.015332330986025032, 0.0039292170319163728, -0.00024003445648641732],
(0.95, 30.0): [-0.29080775563775879, -0.013844059210779323, 0.0039279165616059892, -0.00026085104496801666],
(0.95, 40.0): [-0.28821583032805109, -0.011894686715666892, 0.0038202623278839982, -0.00026933325102031252],
(0.95, 60.0): [-0.28525636737751447, -0.010235910558409797, 0.0038147029777580001, -0.00028598362144178959],
(0.95, 120.0): [-0.28241065885026539, -0.0086103836327305026, 0.0038450612886908714, -0.00030206053671559411],
(0.95, inf): [-0.27885570064169296, -0.0078122455524849222, 0.0041798538053623453, -0.0003469494881774609],
(0.975, 1.0): [-0.65203598304297983, -0.12608944279227957, 0.035710038757117347, -0.0028116024425349053],
(0.975, 2.0): [-0.46371891130382281, -0.096954458319996509, 0.023958312519912289, -0.0017124565391080503],
(0.975, 3.0): [-0.38265282195259875, -0.076782539231612282, 0.017405078796142955, -0.0011610853687902553],
(0.975, 4.0): [-0.34051193158878401, -0.063652342734671602, 0.013528310336964293, -0.00083644708934990761],
(0.975, 5.0): [-0.31777655705536484, -0.051694686914334619, 0.010115807205265859, -0.00054517465344192009],
(0.975, 6.0): [-0.30177149019958716, -0.044806697631189059, 0.008483551848413786, -0.00042827853925009264],
(0.975, 7.0): [-0.29046972313293562, -0.039732822689098744, 0.007435356037378946, -0.00037562928283350671],
(0.975, 8.0): [-0.28309484007368141, -0.034764904940713388, 0.0062932513694928518, -0.00029339243611357956],
(0.975, 9.0): [-0.27711707948119785, -0.031210465194810709, 0.0055576244284178435, -0.00024663798208895803],
(0.975, 10.0): [-0.27249203448553611, -0.028259756468251584, 0.00499112012528406, -0.00021535380417035389],
(0.975, 11.0): [-0.26848515860011007, -0.026146703336893323, 0.0046557767110634073, -0.00020400628148271448],
(0.975, 12.0): [-0.26499921540008192, -0.024522931106167097, 0.0044259624958665278, -0.00019855685376441687],
(0.975, 13.0): [-0.2625023751891592, -0.022785875653297854, 0.004150277321193792, -0.00018801223218078264],
(0.975, 14.0): [-0.26038552414321758, -0.021303509859738341, 0.0039195608280464681, -0.00017826200169385824],
(0.975, 15.0): [-0.25801244886414665, -0.020505508012402567, 0.0038754868932712929, -0.00018588907991739744],
(0.975, 16.0): [-0.25685316062360508, -0.018888418269740373, 0.0035453092842317293, -0.00016235770674204116],
(0.975, 17.0): [-0.25501132271353549, -0.018362951972357794, 0.0035653933105288631, -0.00017470353354992729],
(0.975, 18.0): [-0.25325045404452656, -0.017993537285026156, 0.0036035867405376691, -0.00018635492166426884],
(0.975, 19.0): [-0.25236899494677928, -0.016948921372207198, 0.0034138931781330802, -0.00017462253414687881],
(0.975, 20.0): [-0.25134498025027691, -0.016249564498874988, 0.0033197284005334333, -0.00017098091103245596],
(0.975, 24.0): [-0.24768690797476625, -0.014668160763513996, 0.0032850791186852558, -0.00019013480716844995],
(0.975, 30.0): [-0.24420834707522676, -0.012911171716272752, 0.0031977676700968051, -0.00020114907914487053],
(0.975, 40.0): [-0.24105725356215926, -0.010836526056169627, 0.0030231303550754159, -0.00020128696343148667],
(0.975, 60.0): [-0.23732082703955223, -0.0095442727157385391, 0.0031432904473555259, -0.00023062224109383941],
(0.975, 120.0): [-0.23358581879594578, -0.0081281259918709343, 0.0031877298679120094, -0.00024496230446851501],
(0.975, inf): [-0.23004105093119268, -0.0067112585174133573, 0.0032760251638919435, -0.00026244001319462992],
(0.99, 1.0): [-0.65154119422706203, -0.1266603927572312, 0.03607480609672048, -0.0028668112687608113],
(0.99, 2.0): [-0.45463403324378804, -0.098701236234527367, 0.024412715761684689, -0.0017613772919362193],
(0.99, 3.0): [-0.36402060051035778, -0.079244959193729148, 0.017838124021360584, -0.00119080116484847],
(0.99, 4.0): [-0.31903506063953818, -0.061060740682445241, 0.012093154962939612, -0.00067268347188443093],
(0.99, 5.0): [-0.28917014580689182, -0.052940780099313689, 0.010231009146279354, -0.00057178339184615239],
(0.99, 6.0): [-0.27283240161179012, -0.042505435573209085, 0.0072753401118264534, -0.00031314034710725922],
(0.99, 7.0): [-0.25773968720546719, -0.039384214480463406, 0.0069120882597286867, -0.00032994068754356204],
(0.99, 8.0): [-0.24913629282433833, -0.033831567178432859, 0.0055516244725724185, -0.00022570786249671376],
(0.99, 9.0): [-0.24252380896373404, -0.029488280751457097, 0.0045215453527922998, -0.00014424552929022646],
(0.99, 10.0): [-0.23654349556639986, -0.02705600214566789, 0.0041627255469343632, -0.00013804427029504753],
(0.99, 11.0): [-0.23187404969432468, -0.024803662094970855, 0.0037885852786822475, -0.00012334999287725012],
(0.99, 12.0): [-0.22749929386320905, -0.023655085290534145, 0.0037845051889055896, -0.00014785715789924055],
(0.99, 13.0): [-0.22458989143485605, -0.021688394892771506, 0.0034075294601425251, -0.00012436961982044268],
(0.99, 14.0): [-0.22197623872225777, -0.020188830700102918, 0.0031648685865587473, -0.00011320740119998819],
(0.99, 15.0): [-0.2193924323730066, -0.019327469111698265, 0.0031295453754886576, -0.00012373072900083014],
(0.99, 16.0): [-0.21739436875855705, -0.018215854969324128, 0.0029638341057222645, -0.00011714667871412003],
(0.99, 17.0): [-0.21548926805467686, -0.017447822179412719, 0.0028994805120482812, -0.00012001887015183794],
(0.99, 18.0): [-0.21365014687077843, -0.01688869353338961, 0.0028778031289216546, -0.00012591199104792711],
(0.99, 19.0): [-0.21236653761262406, -0.016057151563612645, 0.0027571468998022017, -0.00012049196593780046],
(0.99, 20.0): [-0.21092693178421842, -0.015641706950956638, 0.0027765989877361293, -0.00013084915163086915],
(0.99, 24.0): [-0.20681960327410207, -0.013804298040271909, 0.0026308276736585674, -0.0001355061502101814],
(0.99, 30.0): [-0.20271691131071576, -0.01206095288359876, 0.0025426138004198909, -0.00014589047959047533],
(0.99, 40.0): [-0.19833098054449289, -0.010714533963740719, 0.0025985992420317597, -0.0001688279944262007],
(0.99, 60.0): [-0.19406768821236584, -0.0093297106482013985, 0.0026521518387539584, -0.00018884874193665104],
(0.99, 120.0): [-0.19010213174677365, -0.0075958207221300924, 0.0025660823297025633, -0.00018906475172834352],
(0.99, inf): [-0.18602070255787137, -0.0062121155165363188, 0.0026328293420766593, -0.00020453366529867131],
(0.995, 1.0): [-0.65135583544951825, -0.1266868999507193, 0.036067522182457165, -0.0028654516958844922],
(0.995, 2.0): [-0.45229774013072793, -0.09869462954369547, 0.024381858599368908, -0.0017594734553033394],
(0.995, 3.0): [-0.35935765236429706, -0.076650408326671915, 0.016823026893528978, -0.0010835134496404637],
(0.995, 4.0): [-0.30704474720931169, -0.063093047731613019, 0.012771683306774929, -0.00075852491621809955],
(0.995, 5.0): [-0.27582551740863454, -0.052533353137885791, 0.0097776009845174372, -0.00051338031756399129],
(0.995, 6.0): [-0.25657971464398704, -0.043424914996692286, 0.0074324147435969991, -0.00034105188850494067],
(0.995, 7.0): [-0.24090407819707738, -0.039591604712200287, 0.0068848429451020387, -0.00034737131709273414],
(0.995, 8.0): [-0.23089540800827862, -0.034353305816361958, 0.0056009527629820111, -0.00024389336976992433],
(0.995, 9.0): [-0.22322694848310584, -0.030294770709722547, 0.0046751239747245543, -0.00017437479314218922],
(0.995, 10.0): [-0.21722684126671632, -0.026993563560163809, 0.0039811592710905491, -0.00013135281785826703],
(0.995, 11.0): [-0.21171635822852911, -0.025156193618212551, 0.0037507759652964205, -0.00012959836685175671],
(0.995, 12.0): [-0.20745332165849167, -0.023318819535607219, 0.0034935020002058903, -0.00012642826898405916],
(0.995, 13.0): [-0.20426054591612508, -0.021189796175249527, 0.003031472176128759, -9.0497733877531618e-05],
(0.995, 14.0): [-0.20113536905578902, -0.020011536696623061, 0.0029215880889956729, -9.571527213951222e-05],
(0.995, 15.0): [-0.19855601561006403, -0.018808533734002542, 0.0027608859956002344, -9.2472995256929217e-05],
(0.995, 16.0): [-0.19619157579534008, -0.017970461530551096, 0.0027113719105000371, -9.9864874982890861e-05],
(0.995, 17.0): [-0.19428015140726104, -0.017009762497670704, 0.0025833389598201345, -9.6137545738061124e-05],
(0.995, 18.0): [-0.19243180236773033, -0.01631617252107519, 0.0025227443561618621, -9.8067580523432881e-05],
(0.995, 19.0): [-0.19061294393069844, -0.01586226613672222, 0.0025207005902641781, -0.00010466151274918466],
(0.995, 20.0): [-0.18946302696580328, -0.014975796567260896, 0.0023700506576419867, -9.5507779057884629e-05],
(0.995, 24.0): [-0.18444251428695257, -0.013770955893918012, 0.0024579445553339903, -0.00012688402863358003],
(0.995, 30.0): [-0.18009742499570078, -0.011831341846559026, 0.0022801125189390046, -0.00012536249967254906],
(0.995, 40.0): [-0.17562721880943261, -0.010157142650455463, 0.0022121943861923474, -0.000134542652873434],
(0.995, 60.0): [-0.17084630673594547, -0.0090224965852754805, 0.0023435529965815565, -0.00016240306777440115],
(0.995, 120.0): [-0.16648414081054147, -0.0074792163241677225, 0.0023284585524533607, -0.00017116464012147041],
(0.995, inf): [-0.16213921875452461, -0.0058985998630496144, 0.0022605819363689093, -0.00016896211491119114],
(0.999, 1.0): [-0.65233994072089363, -0.12579427445444219, 0.035830577995679271, -0.0028470555202945564],
(0.999, 2.0): [-0.45050164311326341, -0.098294804380698292, 0.024134463919493736, -0.0017269603956852841],
(0.999, 3.0): [-0.35161741499307819, -0.076801152272374273, 0.016695693063138672, -0.0010661121974071864],
(0.999, 4.0): [-0.29398448788574133, -0.06277319725219685, 0.012454220010543127, -0.00072644165723402445],
(0.999, 5.0): [-0.25725364564365477, -0.053463787584337355, 0.0099664236557431545, -0.00054866039388980659],
(0.999, 6.0): [-0.23674225795168574, -0.040973155890031254, 0.0062599481191736696, -0.00021565734226586692],
(0.999, 7.0): [-0.21840108878983297, -0.037037020271877719, 0.0055908063671900703, -0.00020238790479809623],
(0.999, 8.0): [-0.2057964743918449, -0.032500885103194356, 0.0046441644585661756, -0.00014769592268680274],
(0.999, 9.0): [-0.19604592954882674, -0.029166922919677936, 0.0040644333111949814, -0.00012854052861297006],
(0.999, 10.0): [-0.18857328935948367, -0.026316705703161091, 0.0035897350868809275, -0.00011572282691335702],
(0.999, 11.0): [-0.18207431428535406, -0.024201081944369412, 0.0031647372098056077, -8.1145935982296439e-05],
(0.999, 12.0): [-0.17796358148991101, -0.021054306118620879, 0.0023968085939602055, -1.5907156771296993e-05],
(0.999, 13.0): [-0.17371965962745489, -0.019577162950177709, 0.0022391783473999739, -2.0613023472812558e-05],
(0.999, 14.0): [-0.16905298116759873, -0.01967115985443986, 0.0026495208325889269, -9.1074275220634073e-05],
(0.999, 15.0): [-0.16635662558214312, -0.017903767183469876, 0.0022301322677100496, -5.1956773935885426e-05],
(0.999, 16.0): [-0.16388776549525449, -0.016671918839902419, 0.0020365289602744382, -4.3592447599724942e-05],
(0.999, 17.0): [-0.16131934177990759, -0.015998918405126326, 0.0019990454743285904, -4.8176277491327653e-05],
(0.999, 18.0): [-0.15880633110376571, -0.015830715141055916, 0.0021688405343832091, -8.061825248932771e-05],
(0.999, 19.0): [-0.15644841913314136, -0.015729364721105681, 0.0022981443610378136, -0.00010093672643417343],
(0.999, 20.0): [-0.15516596606222705, -0.014725095968258637, 0.0021117117014292155, -8.8806880297328484e-05],
(0.999, 24.0): [-0.14997437768645827, -0.012755323295476786, 0.0018871651510496939, -8.0896370662414938e-05],
(0.999, 30.0): [-0.14459974882323703, -0.011247323832877647, 0.0018637400643826279, -9.6415323191606741e-05],
(0.999, 40.0): [-0.13933285919392555, -0.0097151769692496587, 0.0018131251876208683, -0.00010452598991994023],
(0.999, 60.0): [-0.13424555343804143, -0.0082163027951669444, 0.0017883427892173382, -0.00011415865110808405],
(0.999, 120.0): [-0.12896119523040372, -0.0070426701112581112, 0.0018472364154226955, -0.00012862202979478294],
(0.999, inf): [-0.12397213562666673, -0.0056901201604149998, 0.0018260689406957129, -0.00013263452567995485]}
# p values that are defined in the A table
p_keys = [.1,.5,.675,.75,.8,.85,.9,.95,.975,.99,.995,.999]
# v values that are defined in the A table
v_keys = list(range(2, 21)) + [24, 30, 40, 60, 120, inf]
def _isfloat(x):
"""
returns True if x is a float,
returns False otherwise
"""
try:
float(x)
except:
return False
return True
def _phi(p):
"""returns the pth quantile inverse norm"""
return scipy.stats.norm.isf(p)
def _ptransform(p):
"""function for p-value abcissa transformation"""
return -1. / (1. + 1.5 * _phi((1. + p)/2.))
def _select_points(a, list_like):
"""
returns one above a, one below a, and the third
closest point to a sorted in ascending order
for quadratic interpolation. Assumes that points
above and below a exist.
"""
foo = [x for x in list(list_like) if x-a <= 0]
z = [min(foo, key=lambda x : abs(x-a))]
foo = [x for x in list(list_like) if x-a > 0]
z.append(min(foo, key=lambda x : abs(x-a)))
foo = [x for x in list(list_like) if x not in z]
z.append(min(foo, key=lambda x : abs(x-a)))
return sorted(z)
def _func(a, p, r, v):
"""
calculates f-hat for the coefficients in a, probability p,
sample mean difference r, and degrees of freedom v.
"""
# eq. 2.3
f = a[0]*math.log(r-1.) + \
a[1]*math.log(r-1.)**2 + \
a[2]*math.log(r-1.)**3 + \
a[3]*math.log(r-1.)**4
# eq. 2.7 and 2.8 corrections
if r == 3:
f += -0.002 / (1. + 12. * _phi(p)**2)
if v <= 4.364:
f += 1./517. - 1./(312.*(v,1e38)[v==inf])
else:
f += 1./(191.*(v,1e38)[v==inf])
return -f
def _interpolate_p(p, r, v):
"""
interpolates p based on the values in the A table for the
scalar value of r and the scalar value of v
"""
# interpolate p (v should be in table)
# if .5 < p < .75 use linear interpolation in q
# if p > .75 use quadratic interpolation in log(y + r/v)
# by -1. / (1. + 1.5 * _phi((1. + p)/2.))
# find the 3 closest v values
p0, p1, p2 = _select_points(p, p_keys)
y0 = _func(A[(p0, v)], p0, r, v) + 1.
y1 = _func(A[(p1, v)], p1, r, v) + 1.
y2 = _func(A[(p2, v)], p2, r, v) + 1.
y_log0 = math.log(y0 + float(r)/float(v))
y_log1 = math.log(y1 + float(r)/float(v))
y_log2 = math.log(y2 + float(r)/float(v))
# If p < .85 apply only the ordinate transformation
# if p > .85 apply the ordinate and the abcissa transformation
# In both cases apply quadratic interpolation
if p > .85:
p_t = _ptransform(p)
p0_t = _ptransform(p0)
p1_t = _ptransform(p1)
p2_t = _ptransform(p2)
# calculate derivatives for quadratic interpolation
d2 = 2*((y_log2-y_log1)/(p2_t-p1_t) - \
(y_log1-y_log0)/(p1_t-p0_t))/(p2_t-p0_t)
if (p2+p0)>=(p1+p1):
d1 = (y_log2-y_log1)/(p2_t-p1_t) - 0.5*d2*(p2_t-p1_t)
else:
d1 = (y_log1-y_log0)/(p1_t-p0_t) + 0.5*d2*(p1_t-p0_t)
d0 = y_log1
# interpolate value
y_log = (d2/2.) * (p_t-p1_t)**2. + d1 * (p_t-p1_t) + d0
# transform back to y
y = math.exp(y_log) - float(r)/float(v)
elif p > .5:
# calculate derivatives for quadratic interpolation
d2 = 2*((y_log2-y_log1)/(p2-p1) - \
(y_log1-y_log0)/(p1-p0))/(p2-p0)
if (p2+p0)>=(p1+p1):
d1 = (y_log2-y_log1)/(p2-p1) - 0.5*d2*(p2-p1)
else:
d1 = (y_log1-y_log0)/(p1-p0) + 0.5*d2*(p1-p0)
d0 = y_log1
# interpolate values
y_log = (d2/2.) * (p-p1)**2. + d1 * (p-p1) + d0
# transform back to y
y = math.exp(y_log) - float(r)/float(v)
else:
# linear interpolation in q and p
q0 = math.sqrt(2) * -y0 * \
scipy.stats.t.isf((1.+p0)/2., (v,1e38)[v>1e38])
q1 = math.sqrt(2) * -y1 * \
scipy.stats.t.isf((1.+p1)/2., (v,1e38)[v>1e38])
d1 = (q1-q0)/(p1-p0)
d0 = q0
# interpolate values
q = d1 * (p-p0) + d0
# transform back to y
y = -q / (math.sqrt(2) * \
scipy.stats.t.isf((1.+p)/2., (v,1e38)[v>1e38]))
return y
def _interpolate_v(p, r, v):
"""
interpolates v based on the values in the A table for the
scalar value of r and th
"""
# interpolate v (p should be in table)
# ordinate: y**2
# abcissa: 1./v
# find the 3 closest v values
v0, v1, v2 = _select_points(v, v_keys+([],[1])[p>=.90])
# y = f - 1.
y0 = _func(A[(p,v0)], p, r, v0) + 1.
y1 = _func(A[(p,v1)], p, r, v1) + 1.
y2 = _func(A[(p,v2)], p, r, v2) + 1.
# if v2 is inf set to a big number so interpolation
# calculations will work
if v2 > 1e38: v2 = 1e38
# calculate derivatives for quadratic interpolation
d2 = 2.*((y2**2-y1**2)/(1./v2-1./v1) - \
(y0**2-y1**2)/(1./v0-1./v1)) / (1./v2-1./v0)
if (1./v2 + 1./v0) >= (1./v1+1./v1):
d1 = (y2**2-y1**2) / (1./v2-1./v1) - 0.5*d2*(1./v2-1./v1)
else:
d1 = (y1**2-y0**2) / (1./v1-1./v0) + 0.5*d2*(1./v1-1./v0)
d0 = y1**2
# calculate y
y = math.sqrt((d2/2.)*(1./v-1./v1)**2. + d1*(1./v-1./v1)+ d0)
return y
def _qsturng(p, r, v):
# r is interpolated through the q to y here we only need to
# account for when p and/or v are not found in the table.
global A, p_keys, v_keys
if p < .1 or p > .999:
raise ValueError('p must be between .1 and .999')
if p < .9:
if v < 2:
raise ValueError('v must be > 2 when p < .9')
else:
if v < 1:
raise ValueError('v must be > 1 when p >= .9')
if (p,v) in A:
f = _func(A[(p,v)], p, r, v)
y = f + 1.
elif p not in p_keys and v not in v_keys+([],[1])[p>=.90]:
# apply bilinear (quadratic) interpolation
#
# p0,v2 + o + p1,v2 + p2,v2
# r2
#
# 1
# - (p,v)
# v x
#
# r1
# p0,v1 + o + p1,v1 + p2,v1
#
#
# p0,v0 + o r0 + p1,v0 + p2,v0
#
# _ptransform(p)
#
# (p1 and v1 may be below or above (p,v). The algorithm
# works in both cases. For diagramatic simplicity it is
# shown as above)
#
# 1. at v0, v1, and v2 use quadratic interpolation
# to find r0, r1, r2
#
# 2. use r0, r1, r2 and quadratic interpolaiton
# to find y and (p,v)
# find the 3 closest v values
v0, v1, v2 = _select_points(v, v_keys+([],[1])[p>=.90])
# find the 2 closest p values
p0, p1, p2 = _select_points(p, p_keys)
r0 = _interpolate_p(p, r, v0)
r1 = _interpolate_p(p, r, v1)
r2 = _interpolate_p(p, r, v2)
# calculate derivatives for quadratic interpolation
d2 = 2.*((r2**2-r1**2)/(1./v2-1./v1) - \
(r0**2-r1**2)/(1./v0-1./v1)) / (1./v2-1./v0)
if (1./v2 + 1./v0) >= (1./v1+1./v1):
d1 = (r2**2-r1**2) / (1./v2-1./v1) - 0.5*d2*(1./v2-1./v1)
else:
d1 = (r1**2-r0**2) / (1./v1-1./v0) + 0.5*d2*(1./v1-1./v0)
d0 = r1**2
# calculate y
y = math.sqrt((d2/2.)*(1./v-1./v1)**2. + d1*(1./v-1./v1)+ d0)
elif v not in v_keys+([],[1])[p>=.90]:
y = _interpolate_v(p, r, v)
elif p not in p_keys:
y = _interpolate_p(p, r, v)
return math.sqrt(2) * -y * \
scipy.stats.t.isf((1.+p)/2., (v,1e38)[v>1e38])
# make a qsturng functinon that will accept list-like objects
_vqsturng = np.vectorize(_qsturng)
def qsturng(p, r, v):
"""
returns the q-value of the Studentized Range q-distribution as a
function of the probability (p), number of sample means (r), and
the degrees of freedom (v).
"""
if all(map(_isfloat, [p, r, v])):
return _qsturng(p, r, v)
return _vqsturng(p, r, v)
import scipy.optimize
def _psturng(q, r, v):
opt_func = lambda p, r, v: abs(_qsturng(p, r, v) - q)
return 1. - scipy.optimize.fminbound(opt_func, .1, .999, args=(r,v))
_vpsturng = np.vectorize(_psturng)
def psturng(q, r, v):
"""
returns the probability for the Studentized q-distribution where
the value q cooresponds to qsturng(1 - p, r, v)
If .001 is returned the probability should be interpreted
as,
p <= .001.
Likewise if .9 is returned the probability should be
interpreted as,
p >= .9.
"""
if all(map(_isfloat, [q, r, v])):
return _psturng(q, r, v)
return _vpsturng(q, r, v)
##p, r, v = .9, 10, 20
##print
##print 'p and v interpolation'
##print '\t20\t22\t24'
##print '.75',qsturng(.75, r, 20),qsturng(.75, r, 22),qsturng(.75, r, 24)
##print '.85',qsturng(.85, r, 20),qsturng(.85, r, 22),qsturng(.85, r, 24)
##print '.90',qsturng(.90, r, 20),qsturng(.90, r, 22),qsturng(.90, r, 24)
##print
##print 'p and v interpolation'
##print '\t120\t500\tinf'
##print '.950',qsturng(.95, r, 120),qsturng(.95, r, 500),qsturng(.95, r, inf)
##print '.960',qsturng(.96, r, 120),qsturng(.96, r, 500),qsturng(.96, r, inf)
##print '.975',qsturng(.975, r, 120),qsturng(.975, r, 500),qsturng(.975, r, inf)
##print
##print 'p and v interpolation'
##print '\t40\t50\t60'
##print '.950',qsturng(.95, r, 40),qsturng(.95, r, 50),qsturng(.95, r, 60)
##print '.960',qsturng(.96, r, 40),qsturng(.96, r, 50),qsturng(.96, r, 60)
##print '.975',qsturng(.975, r, 40),qsturng(.975, r, 50),qsturng(.975, r, 60)
##print
##print 'p and v interpolation'
##print '\t20\t22\t24'
##print '.50',qsturng(.5, r, 20),qsturng(.5, r, 22),qsturng(.5, r, 24)
##print '.60',qsturng(.6, r, 20),qsturng(.6, r, 22),qsturng(.6, r, 24)
##print '.75',qsturng(.75, r, 20),qsturng(.75, r, 22),qsturng(.75, r, 24)