-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathvae_conv_mnist.py
124 lines (105 loc) · 4.53 KB
/
vae_conv_mnist.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
from __future__ import print_function
import argparse
import torch
import torch.utils.data
from torch import nn, optim
from torch.autograd import Variable
from torch.nn import functional as F
from torchvision import datasets, transforms
from torchvision.utils import save_image
import json
import datetime
import os
import vae_conv_model_mnist
parser = argparse.ArgumentParser(description='PyTorch MNIST Example')
parser.add_argument('--batch-size', type=int, default=64, metavar='N',
help='input batch size for training (default: 64)')
parser.add_argument('--dataroot', help='path to dataset')
parser.add_argument('--epochs', type=int, default=10, metavar='N',
help='number of epochs to train (default: 2)')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='enables CUDA training')
parser.add_argument('--seed', type=int, default=1, metavar='S',
help='random seed (default: 1)')
parser.add_argument('--log-interval', type=int, default=10, metavar='N',
help='how many batches to wait before logging training status')
parser.add_argument('--outf', default='.', help='folder to output images and model checkpoints')
args = parser.parse_args()
args.cuda = not args.no_cuda and torch.cuda.is_available()
torch.manual_seed(args.seed)
if args.cuda:
torch.cuda.manual_seed(args.seed)
print("cuda", args.cuda, args.no_cuda, torch.cuda.is_available())
kwargs = {'num_workers': 1, 'pin_memory': True} if args.cuda else {}
train_loader = torch.utils.data.DataLoader(
datasets.FashionMNIST('../data', train=True, download=True,
transform=transforms.ToTensor()),
batch_size=args.batch_size, shuffle=True, **kwargs)
test_loader = torch.utils.data.DataLoader(
datasets.FashionMNIST('../data', train=False, transform=transforms.ToTensor()),
batch_size=args.batch_size, shuffle=True, **kwargs)
model = vae_conv_model_mnist.VAE(20)
model.have_cuda = args.cuda
if args.cuda:
model.cuda()
print(model)
optimizer = optim.Adam(model.parameters(), lr=1e-3)
# Reconstruction + KL divergence losses summed over all elements and batch
def loss_function(recon_x, x, mu, logvar):
# print(recon_x.size(), x.size())
BCE = F.binary_cross_entropy(recon_x.view(-1, 784), x.view(-1, 784), size_average=False)
# see Appendix B from VAE paper:
# Kingma and Welling. Auto-Encoding Variational Bayes. ICLR, 2014
# https://arxiv.org/abs/1312.6114
# 0.5 * sum(1 + log(sigma^2) - mu^2 - sigma^2)
KLD = -0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp())
# return BCE + KLD
return BCE + 3 * KLD
outf = args.outf + "_" + datetime.datetime.now().strftime("%Y-%m-%d_%H:%M:%S")
if not os.path.exists(outf):
os.makedirs(outf)
outf_samples = outf + "/samples";
os.makedirs(outf_samples)
with open(outf + '/model.txt', 'w') as f1:
print(model, file=f1)
def train(epoch):
model.train()
train_loss = 0
for batch_idx, (data, _) in enumerate(train_loader):
data = Variable(data)
if args.cuda:
data = data.cuda()
optimizer.zero_grad()
recon_batch, mu, logvar = model(data)
loss = loss_function(recon_batch, data, mu, logvar)
loss.backward()
train_loss += loss.data[0]
optimizer.step()
if batch_idx % args.log_interval == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader),
loss.data[0] / len(data)))
print('====> Epoch: {} Average loss: {:.4f}'.format(
epoch, train_loss / len(train_loader.dataset)))
if epoch % 10 == 0:
torch.save(model.state_dict(), '%s/vae_epoch_%d.pth' % (outf, epoch))
def test(epoch):
model.eval()
test_loss = 0
for i, (data, _) in enumerate(test_loader):
if args.cuda:
data = data.cuda()
data = Variable(data, volatile=True)
recon_batch, mu, logvar = model(data)
test_loss += loss_function(recon_batch, data, mu, logvar).data[0]
if i == 0:
n = min(data.size(0), 16)
comparison = torch.cat([data[:n],
recon_batch.view(args.batch_size, 1, 28, 28)[:n]])
save_image(comparison.data.cpu(), '%s/%03d.png' % (outf_samples, epoch), nrow=n)
test_loss /= len(test_loader.dataset)
print('====> Test set loss: {:.4f}'.format(test_loss))
for epoch in range(1, args.epochs + 1):
train(epoch)
test(epoch)