-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmain_gamora.py
220 lines (189 loc) · 9.47 KB
/
main_gamora.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
import argparse
import torch
import torch.utils.data as Data
import torch_geometric.transforms as T
from logger import Logger
import os
import sys
import numpy as np
import pandas as pd
import copy
from utils import *
from dataset_prep import PygNodePropPredDataset, Evaluator
from model import HOGA
#torch.set_num_threads(80)
torch.manual_seed(0)
def main():
parser = argparse.ArgumentParser(description='mult16')
parser.add_argument('--bits', type=int, default=8)
parser.add_argument('--bits_test', type=int, default=64)
parser.add_argument('--device', type=int, default=0)
parser.add_argument('--log_steps', type=int, default=1)
parser.add_argument('--num_layers', type=int, default=1)
parser.add_argument('--hidden_channels', type=int, default=256)
parser.add_argument('--heads', type=int, default=8)
parser.add_argument('--dropout', type=float, default=0.5)
parser.add_argument('--weight_decay', type=float, default=5e-5)
parser.add_argument('--lr', type=float, default=5e-4)
parser.add_argument('--epochs', type=int, default=500)
parser.add_argument('--batch_size', type=int, default=1024)
parser.add_argument('--num_hops', type=int, default=8)
parser.add_argument('--runs', type=int, default=1)
parser.add_argument('--mapped', type=int, default=1)
parser.add_argument('--lda1', type=int, default=5)
parser.add_argument('--lda2', type=int, default=1)
parser.add_argument('--design', type=str, default='booth')
parser.add_argument('--root_dir', type=str, default='/scratch-x3/circuit_datasets')
parser.add_argument('--directed', action='store_true')
parser.add_argument('--test_all_bits', action='store_true')
parser.add_argument('--save_model', action='store_true')
args = parser.parse_args()
print(args)
device = f'cuda:{args.device}' if torch.cuda.is_available() else 'cpu'
# device = torch.device('cpu') ## cpu for now only
if not os.path.exists(f'models/'):
os.makedirs(f'models/')
if args.mapped == 1:
suffix ="_7nm_mapped"
elif args.mapped == 2:
suffix ="_mapped"
else:
suffix = ''
if args.design == "booth":
design_name = "booth_mult" + str(args.bits) + suffix
root_path = f"{args.root_dir}/booth/"
else:
design_name = "mult" + str(args.bits) + suffix
root_path = f"{args.root_dir}/csa/"
train_design_name = design_name
design_name_root = design_name + "_root"
design_name_shared = design_name + "_shared"
### training dataset loading
master = pd.read_csv('dataset_prep/master.csv', index_col = 0)
if not design_name_root in master:
os.system(f"python dataset_prep/make_master_file.py --design_name {design_name_root}")
if not design_name_shared in master:
os.system(f"python dataset_prep/make_master_file.py --design_name {design_name_shared}")
dataset_r = PygNodePropPredDataset(name=f'{design_name_root}', root=root_path)
print("Training on %s" % design_name)
data_r = dataset_r[0]
data_r = T.ToSparseTensor()(data_r)
dataset = PygNodePropPredDataset(name=f'{design_name_shared}', root=root_path)
data = dataset[0]
data = preprocess(data, args)
data = T.ToSparseTensor()(data)
split_idx = dataset.get_idx_split()
train_idx = split_idx['train']#.to(device)
valid_idx = split_idx['valid']#.to(device)
test_idx = split_idx['test']#.to(device)
batch_data_train = Data.TensorDataset(data.x[train_idx], data.y[train_idx], data_r.y[train_idx])
# batch_data_valid = Data.TensorDataset(data.x[valid_idx], data.y[valid_idx], data_r.y[valid_idx])
batch_data_test = Data.TensorDataset(data.x[test_idx], data.y[test_idx], data_r.y[test_idx])
train_loader = Data.DataLoader(batch_data_train, batch_size=args.batch_size, shuffle=True, num_workers=10)
# valid_loader = Data.DataLoader(batch_data_valid, batch_size=args.batch_size, shuffle=False, num_workers=10)
test_loader = Data.DataLoader(batch_data_test, batch_size=args.batch_size, shuffle=False, num_workers=10)
model = HOGA(data.num_features, args.hidden_channels, 3, args.num_layers,
args.dropout, num_hops=args.num_hops+1, heads=args.heads, attn_type="mix").to(device)
logger_r = Logger(args.runs, args)
logger = Logger(args.runs, args)
for run in range(args.runs):
model.reset_parameters()
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr, weight_decay = args.weight_decay)
best_test_r = float('-inf')
best_test_s = float('-inf')
for epoch in range(1, 1 + args.epochs):
loss = train(model, train_loader, optimizer, device, args)
result = test_all(model, test_loader, device)
logger_r.add_result(run, result[:3])
logger.add_result(run, result[3:])
if epoch % args.log_steps == 0:
train_acc_r, valid_acc_r, test_acc_r, train_acc_s, valid_acc_s, test_acc_s = result
if test_acc_s >= best_test_s:
best_test_r = test_acc_r
best_test_s = test_acc_s
if args.save_model:
model_name = f'models/hoga_{design_name}_{args.design}.pt'
torch.save({'model_state_dict': model.state_dict()}, model_name)
print(f'Run: {run + 1:02d}, '
f'Epoch: {epoch:02d}, '
f'Loss: {loss:.4f}, '
f'[Root Model] Train: {100 * train_acc_r:.2f}%, '
f'[Root Model] Valid: {100 * valid_acc_r:.2f}% '
f'[Root Model] Test: {100 * test_acc_r:.2f}% '
f'[Shared Model] Train: {100 * train_acc_s:.2f}%, '
f'[Shared Model] Valid: {100 * valid_acc_s:.2f}% '
f'[Shared Model] Test: {100 * test_acc_s:.2f}%')
logger_r.print_statistics(run)
logger.print_statistics(run)
logger_r.print_statistics()
logger.print_statistics()
### evaluation dataset loading
logger_eval_r = Logger(1, args)
logger_eval = Logger(1, args)
if args.mapped == 1:
suffix ="_7nm_mapped"
elif args.mapped == 2:
suffix ="_mapped"
else:
suffix = ''
if args.test_all_bits:
bits_test_lst = [64, 128, 192, 256, 320, 384, 448, 512, 576, 640, 704, 768]
else:
bits_test_lst = [args.bits_test]
## load pre-trained model
if args.save_model:
checkpoint = torch.load(model_name)
model.load_state_dict(checkpoint['model_state_dict'])
for bits_test in bits_test_lst:
if args.design == "booth":
design_name = "booth_mult" + str(bits_test) + suffix
else:
design_name = "mult" + str(bits_test) + suffix
design_name_root = design_name + "_root"
design_name_shared = design_name + "_shared"
print("Evaluation on %s" % design_name)
master = pd.read_csv('dataset_prep/master.csv', index_col = 0)
if not design_name_root in master:
os.system(f"python dataset_prep/make_master_file.py --design_name {design_name_root}")
if not design_name_shared in master:
os.system(f"python dataset_prep/make_master_file.py --design_name {design_name_shared}")
dataset_r = PygNodePropPredDataset(name=f'{design_name_root}', root=root_path)
data_r = dataset_r[0]
data_r = T.ToSparseTensor()(data_r)
dataset = PygNodePropPredDataset(name=f'{design_name_shared}', root=root_path)
data = dataset[0]
data = preprocess(data, args)
data = T.ToSparseTensor()(data)
batch_data_test = Data.TensorDataset(data.x, data.y, data_r.y)
test_loader = Data.DataLoader(batch_data_test, batch_size=args.batch_size, shuffle=False, num_workers=10)
for run_1 in range(1):
for epoch in range(1):
file_name = f'{args.design}_{design_name_shared}'
result = test_all(model, test_loader, device, file_name)
logger_eval_r.add_result(run_1, result[:3])
logger_eval.add_result(run_1, result[3:])
if epoch % args.log_steps == 0:
train_acc_r, valid_acc_r, test_acc_r, train_acc_s, valid_acc_s, test_acc_s = result
print(f'Run: {run_1 + 1:02d}, '
f'Epoch: {epoch:02d}, '
f'Loss: {loss:.4f}, '
f'[Root Model] Train: {100 * train_acc_r:.2f}%, '
f'[Root Model] Valid: {100 * valid_acc_r:.2f}% '
f'[Root Model] Test: {100 * test_acc_r:.2f}% '
f'[Shared Model] Train: {100 * train_acc_s:.2f}%, '
f'[Shared Model] Valid: {100 * valid_acc_s:.2f}% '
f'[Shared Model] Test: {100 * test_acc_s:.2f}%')
logger_eval_r.print_statistics()
logger_eval.print_statistics()
## save results
if not os.path.exists(f'results/hoga'):
os.makedirs(f'results/hoga')
filename = f'results/hoga/{args.design}_{train_design_name}.csv'
print(f"Saving results to {filename}")
with open(f"{filename}", 'a+') as write_obj:
write_obj.write(
f"{design_name} " + f"{args.weight_decay} " + f"{args.dropout} " + f"{args.lr} " + \
f"{args.num_layers} " + f"{args.epochs} " + f"{args.hidden_channels} " + \
f"test_acc_r: {100 * test_acc_r:.2f} " + f"test_acc_s: {100 * test_acc_s:.2f} \n")
if __name__ == "__main__":
main()