-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathrunsemi_EM.py
223 lines (175 loc) · 9.9 KB
/
runsemi_EM.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
import numpy as np
import time
import sys
import subprocess
import os
import random
from NCRFAE.neurocrf_autoencoder_EM import *
import gzip
import cPickle
from NCRFAE.utils import *
import argparse
def run(parsed_args):
lfilename = parsed_args.labeled_set
per_labeled = parsed_args.percent_labeled
per_unlabeled = parsed_args.percent_unlabeled
em_weight_unlabeled = parsed_args.em_weight_unlabeled
lg_head = lfilename.split('/')[1]
folder = lg_head + '_semi_EM' + '_results'
if not os.path.exists(folder):
os.mkdir(folder)
# load the dataset
f = gzip.open(lfilename,'rb')
train_set, valid_set, test_set, dic = cPickle.load(f)
print lfilename + " loaded."
idx2label = dict((k, v) for v, k in dic['labels2idx'].iteritems())
idx2word = dict((k, v) for v, k in dic['words2idx'].iteritems())
idx2char = dict((k, v) for v, k in dic['chars2idx'].iteritems())
idx2vec = dic['idx2vec']
train_lex, train_char, train_y = train_set
valid_lex, valid_char, valid_y = valid_set
test_lex, test_char, test_y = test_set
vocsize = len(idx2vec)
charsize = len(idx2char)
# number of classes
n_classes = len(idx2label)
# print n_classes
char_embeddingdim = parsed_args.char_emb_dim
embeddingdim = parsed_args.emb_dimension
hiddensize = parsed_args.hiddensize
char_hiddensize = parsed_args.char_hiddensize
randomseed = parsed_args.seed
windowsize = parsed_args.context_win
dropout_rate = parsed_args.dropout_rate
# initialize a random number generator
rng = np.random.RandomState(randomseed)
# word embeddings
if parsed_args.random_emb:
# add one for PADDING at the end or beginning(the dummy word) ; word vectors are parameters as well
embeddings = 0.2 * rng.uniform(-1.0, 1.0, (vocsize+1, embeddingdim)).astype(np.float32)
else:
# using Mikolov's embeddings
embeddings = np.zeros((vocsize+1, embeddingdim), dtype=np.float32)
for idx, value in idx2vec.iteritems():
embeddings[idx] = value
# char embeddings
char_embeddings = 0.2 * rng.uniform(-1.0, 1.0, (charsize+1, char_embeddingdim)).astype(np.float32)
# instanciate the model
classifier = CRF_Auto_Encoder(rng, embeddings, char_embeddings, hiddensize, char_hiddensize, embeddingdim, char_embeddingdim, windowsize, n_classes, vocsize+1, dropout_rate = dropout_rate)
classifier.compile()
# semi-supervised learning starting from here
training_idxs = np.arange(len(train_lex))
# train with early stopping on validation set
best_res = -np.inf # infinity
#divide the training set into labeled data and unlabeled data
n_threshold_labeled = len(train_lex)/100*per_labeled
n_threshold_unlabeled = n_threshold_labeled + len(train_lex)/100*per_unlabeled
#initialize parameters of decoder by using labeled dataset
temp_theta_table = np.zeros((classifier.n_classes, classifier.dic_size))
for idx, i in enumerate(training_idxs):
if i < n_threshold_labeled:
for x, y in zip(train_lex[i], train_y[i]): # x, y are indices of word, label
temp_theta_table[y, x] += 1
temp_theta_table = npsoftmax(temp_theta_table)
classifier.decoder_update_func(temp_theta_table)
for e in xrange(parsed_args.nepochs):
# shuffle
rng.shuffle(training_idxs)
current_epoch = e
# training the encoder
tic = time.time()
for idx, i in enumerate(training_idxs):
trainx = contextwin(train_lex[i], windowsize)
trainx_char = contextwin_char(train_char[i], windowsize)
trainy = train_y[i]
if i < n_threshold_labeled:
cost_value, predicted_value = classifier.train_xy_func(trainx, trainx_char, trainy)
elif i >= n_threshold_labeled and i < n_threshold_unlabeled:
cost_value, predicted_value = classifier.train_x_func(trainx, trainx_char)
else:
continue
if parsed_args.verbose:
print '[Semi-supervised learning] per %2.2f%% epoch %i >> %2.2f%%' % (1*per_labeled, e, (idx+1)*100./len(train_lex)), 'completed in %.2f (sec) <<\r' % (time.time()-tic),
sys.stdout.flush()
new_theta_table = np.zeros((classifier.n_classes, classifier.dic_size))
# directly optimize the decoder
for idx, i in enumerate(training_idxs):
if i < n_threshold_labeled:
for x, y in zip(train_lex[i], train_y[i]): # x, y are indices of word, label
new_theta_table[y, x] += 1
elif i >= n_threshold_labeled and i < n_threshold_unlabeled:
trainx = contextwin(train_lex[i], windowsize)
trainx_char = contextwin_char(train_char[i], windowsize)
alpha_table, beta_table, Z = classifier.forward_backward_func(trainx, trainx_char)
for t in xrange(train_lex[i].shape[0]):
expected_count = alpha_table[t] * beta_table[t] / Z * em_weight_unlabeled
v_id = train_lex[i][t]
new_theta_table[:,v_id] += expected_count
else:
continue
new_theta_table = npsoftmax(new_theta_table)
classifier.decoder_update_func(new_theta_table)
# evaluation // back into the real world : id -> words
# validation
tic = time.time()
predictions_valid = []
for i in xrange(len(valid_lex)):
validx = contextwin(valid_lex[i], windowsize)
validx_char = contextwin_char(valid_char[i], windowsize)
temp = classifier.infer_func(validx, validx_char).astype(np.int32)
validpred = temp[1:-1]
predictions_valid.append(map(lambda u: idx2label[u], validpred))
if parsed_args.verbose:
print '[Testing on validation set] per %2.2f%% epoch %i >> %2.2f%%' % (1*per_labeled, e, (i+1)*100./len(valid_lex)), 'completed in %.2f (sec) <<\r' % (time.time()-tic),
sys.stdout.flush()
groundtruth_valid = [map(lambda u: idx2label[u], y) for y in valid_y]
words_valid = [map(lambda u: idx2word[u], w) for w in valid_lex]
# compute the accuracy using pos
res_valid = poseval(predictions_valid, groundtruth_valid, words_valid, folder + '/' + str(per_labeled) + '_current.valid.txt')
if res_valid['wordacc'] > best_res:
# testing
tic = time.time()
predictions_test = []
for i in xrange(len(test_lex)):
testx = contextwin(test_lex[i], windowsize)
testx_char = contextwin_char(test_char[i], windowsize)
temp = classifier.infer_func(testx, testx_char).astype(np.int32) # a list of integers
testpred = temp[1:-1]
predictions_test.append(map(lambda u: idx2label[u], testpred))
if parsed_args.verbose:
print '[Testing on testing set] per %2.2f%% epoch %i >> %2.2f%%' % (1*per_labeled, e, (i+1)*100./len(test_lex)), 'completed in %.2f (sec) <<\r' % (time.time()-tic),
sys.stdout.flush()
groundtruth_test = [map(lambda u: idx2label[u], y) for y in test_y]
words_test = [map(lambda u: idx2word[u], w) for w in test_lex]
res_test = poseval(predictions_test, groundtruth_test, words_test, folder + '/' + str(per_labeled) + '_current.test.txt')
classifier.save(folder, '_' + str(current_epoch) + '.model')
best_res = res_valid['wordacc']
if parsed_args.verbose:
print 'NEW BEST: epoch', e, 'valid acc', res_valid['wordacc'], 'best test acc', res_test['wordacc'], ' '*20
print ''
vsacc, vwacc = res_valid['sentenceacc'], res_valid['wordacc']
tsacc, twacc = res_test['sentenceacc'], res_test['wordacc']
best_epoch = e
subprocess.call(['mv', folder + '/' + str(per_labeled) + '_current.valid.txt', folder + '/' + str(per_labeled) + '_best.valid.txt'])
print("semi-supervised")
subprocess.call(['mv', folder + '/' + str(per_labeled) + '_current.test.txt', folder + '/' + str(per_labeled) + '_best.test.txt'])
print 'BEST RESULT: epoch', best_epoch, 'with the model', folder, 'with percent of labeled data', per_labeled, 'percent of un-labeled data', per_unlabeled
print 'valid word accuracy', vwacc, 'best test word accuracy', twacc
if __name__ == '__main__':
argparser = argparse.ArgumentParser()
argparser.add_argument("--labeled_set", type=str, help="The labeled dataset")
argparser.add_argument("--percent_labeled", type=int, default=50, help="Percentage of labeled data")
argparser.add_argument("--percent_unlabeled", type=int, default=50, help="Percentage of unlabeled data")
argparser.add_argument("--em_weight_unlabeled", type=float, default=1.00, help="weight for unlabled data in EM")
argparser.add_argument("--verbose", type=bool, default=False, help="Verbose output")
argparser.add_argument("--seed", type=int, default=2017, help="Set up the random seed")
argparser.add_argument("--random_emb", type=bool, default=False, help="Use the randomized word embedding")
argparser.add_argument("--emb_dimension", type=int, default=200, help="Word embedding dimension")
argparser.add_argument("--char_emb_dim", type=int, default=15, help="Char embedding dimension")
argparser.add_argument("--context_win", type=int, default=3, help="Context window size")
argparser.add_argument("--hiddensize", type=int, default=20, help="Number of nodes in the hidden layer")
argparser.add_argument("--char_hiddensize", type=int, default=20, help="Number of nodes in the hidden layer for char layer")
argparser.add_argument("--nepochs", type=int, default=25, help="Maximum number of epochs")
argparser.add_argument("--dropout_rate", type=float, default=0.5, help="Dropout rate for the dropout layer")
parsed_args = argparser.parse_args()
run(parsed_args)