forked from rmrao/msa-transformer
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlr_schedulers.py
177 lines (151 loc) · 5.67 KB
/
lr_schedulers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Modifications by Roshan Rao
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch optimization for BERT model."""
import logging
import math
from typing import Optional, Type
from torch.optim.lr_scheduler import LambdaLR
logger = logging.getLogger(__name__)
class ConstantLRSchedule(LambdaLR):
"""Constant learning rate schedule."""
def __init__(
self,
optimizer,
warmup_steps: Optional[int] = None,
t_total: Optional[int] = None,
last_epoch: int = -1,
):
super(ConstantLRSchedule, self).__init__(
optimizer, lambda _: 1.0, last_epoch=last_epoch
) # type: ignore
class WarmupConstantSchedule(LambdaLR):
"""Linear warmup and then constant.
Linearly increases learning rate schedule from 0 to 1 over `warmup_steps`
training steps. Keeps learning rate schedule equal to 1. after warmup_steps.
"""
def __init__(
self,
optimizer,
warmup_steps: int,
t_total: Optional[int] = None,
last_epoch: int = -1,
):
self.warmup_steps = warmup_steps
super(WarmupConstantSchedule, self).__init__(
optimizer, self.lr_lambda, last_epoch=last_epoch
) # type: ignore
def lr_lambda(self, step):
if step < self.warmup_steps:
return float(step) / float(max(1.0, self.warmup_steps))
return 1.0
class WarmupLinearSchedule(LambdaLR):
"""Linear warmup and then linear decay.
Linearly increases learning rate from 0 to 1 over `warmup_steps` training steps.
Linearly decreases learning rate from 1. to 0. over remaining
`t_total - warmup_steps` steps.
"""
def __init__(
self, optimizer, warmup_steps: int, t_total: int, last_epoch: int = -1
):
self.warmup_steps = warmup_steps
self.t_total = t_total
super(WarmupLinearSchedule, self).__init__(
optimizer, self.lr_lambda, last_epoch=last_epoch
) # type: ignore
def lr_lambda(self, step):
if step < self.warmup_steps:
return float(step) / float(max(1, self.warmup_steps))
return max(
0.0,
float(self.t_total - step)
/ float(max(1.0, self.t_total - self.warmup_steps)),
)
class WarmupCosineSchedule(LambdaLR):
"""Linear warmup and then cosine decay.
Linearly increases learning rate from 0 to 1 over `warmup_steps` training steps.
Decreases learning rate from 1. to 0. over remaining `t_total - warmup_steps` steps
following a cosine curve. If `cycles` (default=0.5) is different from default,
learning rate follows cosine function after warmup.
"""
def __init__(
self,
optimizer,
warmup_steps: int,
t_total: int,
cycles: float = 0.5,
last_epoch: int = -1,
):
self.warmup_steps = warmup_steps
self.t_total = t_total
self.cycles = cycles
super(WarmupCosineSchedule, self).__init__(
optimizer, self.lr_lambda, last_epoch=last_epoch
) # type: ignore
def lr_lambda(self, step):
if step < self.warmup_steps:
return float(step) / float(max(1.0, self.warmup_steps))
# progress after warmup
progress = float(step - self.warmup_steps) / float(
max(1, self.t_total - self.warmup_steps)
)
return max(
0.0, 0.5 * (1.0 + math.cos(math.pi * float(self.cycles) * 2.0 * progress))
)
class WarmupCosineWithHardRestartsSchedule(LambdaLR):
"""Linear warmup and then cosine cycles with hard restarts.
Linearly increases learning rate from 0 to 1 over `warmup_steps` training steps.
If `cycles` (default=1.) is different from default, learning rate follows `cycles`
times a cosine decaying learning rate (with hard restarts).
"""
def __init__(
self,
optimizer,
warmup_steps: int,
t_total: int,
cycles: float = 1.0,
last_epoch: int = -1,
):
self.warmup_steps = warmup_steps
self.t_total = t_total
self.cycles = cycles
super(WarmupCosineWithHardRestartsSchedule, self).__init__(
optimizer, self.lr_lambda, last_epoch=last_epoch
) # type: ignore
def lr_lambda(self, step):
if step < self.warmup_steps:
return float(step) / float(max(1, self.warmup_steps))
# progress after warmup
progress = float(step - self.warmup_steps) / float(
max(1, self.t_total - self.warmup_steps)
)
if progress >= 1.0:
return 0.0
return max(
0.0,
0.5 * (1.0 + math.cos(math.pi * ((float(self.cycles) * progress) % 1.0))),
)
LR_SCHEDULERS = {
"constant": ConstantLRSchedule,
"warmup_constant": WarmupConstantSchedule,
"warmup_linear": WarmupLinearSchedule,
"warmup_cosine": WarmupCosineSchedule,
"warmup_cosine_with_restarts": WarmupCosineWithHardRestartsSchedule,
}
def get(scheduler: str) -> Type[LambdaLR]:
try:
return LR_SCHEDULERS[scheduler]
except KeyError:
raise KeyError(f"Unrecognized lr_scheduler {scheduler}")