-
Notifications
You must be signed in to change notification settings - Fork 0
/
generateTestCases.py
98 lines (85 loc) · 2.83 KB
/
generateTestCases.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
# New Generate Test Cases
from .solutions import *
import numpy as np
np.random.seed(3)
import math
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.layers import Dense, LSTM, Reshape
# import copy
# from keras.callbacks import History
# import tensorflow as tf
#from grader_support import stdout_redirector
#from grader_support import util
os.environ['TF_CPP_MIN_LOG_LEVEL']='3'
# with suppress_stdout_stderr():
n_a = 64
n_values = 90
LSTM_cell = LSTM(n_a, return_state=True) # Used in Step 2.C
densor = Dense(n_values, activation='softmax') # Used in Step 2.D
x_initializer = np.zeros((1, 1, 90))
a_initializer = np.zeros((1, n_a))
c_initializer = np.zeros((1, n_a))
reshapor = Reshape((1, n_values))
# ================================================================================================
# generating the test cases for dj model
'''
def djmodel_gen():
m = 60
a0 = np.zeros((m, n_a))
c0 = np.zeros((m, n_a))
djmodelx = djmodel(Tx = 30 , LSTM_cell=LSTM_cell, densor=densor, reshapor=reshapor)
opt = Adam(lr=0.01, beta_1=0.9, beta_2=0.999, decay=0.01)
djmodelx.compile(optimizer=opt, loss='categorical_crossentropy', metrics=['accuracy'])
cp = djmodelx.count_params()
ml = len(djmodelx.layers)
print(cp, ml)
return (cp, ml)
# ================================================================================================
'''
# GENERATING TEST CASES FOR THE MUSIC INFERENCE MODEL
'''
def music_inference_model_gen():
im = music_inference_model(LSTM_cell, densor, Ty=10)
opt = Adam(lr=0.01, beta_1=0.9, beta_2=0.999, decay=0.01)
im.compile(optimizer=opt, loss='categorical_crossentropy', metrics=['accuracy'])
cp1 = im.count_params()
ml1 = len(im.layers)
m_out1 = np.asarray((cp1, ml1))
print(m_out1)
return m_out1
'''
# ================================================================================================
# generating the test cases for predicted_and_sample
inference_model = music_inference_model(LSTM_cell, densor, 13)
results, indices = predict_and_sample(inference_model, x_initializer, a_initializer, c_initializer)
def generateTestCases():
testCases = {
'djmodel': {
'partId': 'iz6sX',
'testCases': [
{
'testInput': (30, LSTM_cell, densor, reshapor),
'testOutput': (45530, 36)
}
]
},
'music_inference_model': {
'partId': 'MtuL2',
'testCases': [
{
'testInput': (LSTM_cell, densor, 10),
'testOutput': (45530, 32)
}
]
},
'predict_and_sample': {
'partId': 'tkaiA',
'testCases': [
{
'testInput': (inference_model, x_initializer, a_initializer, c_initializer),
'testOutput': (results, indices)
}
]
},
}
return testCases