forked from keunwoochoi/music-auto_tagging-keras
-
Notifications
You must be signed in to change notification settings - Fork 0
/
audio_conv_rnn.py
133 lines (112 loc) · 4.71 KB
/
audio_conv_rnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
# -*- coding: utf-8 -*-
'''AudioConvRNN model for Keras.
'''
from keras import backend as K
from keras.layers import Input, Dense
from keras.models import Model
from keras.layers import Dense, Dropout, Reshape, Permute
from keras.layers.convolutional import Convolution2D
from keras.layers.convolutional import MaxPooling2D, ZeroPadding2D
from keras.layers.normalization import BatchNormalization
from keras.layers.advanced_activations import ELU
from keras.layers.recurrent import GRU
from keras.utils.data_utils import get_file
TH_WEIGHTS_PATH = 'https://github.com/keunwoochoi/music-auto_tagging-keras/blob/master/data/rnn_weights_theano.hdf5'
TF_WEIGHTS_PATH = 'https://github.com/keunwoochoi/music-auto_tagging-keras/blob/master/data/rnn_weights_tensorflow.hdf5'
def AudioConvRNN(weights='msd', input_tensor=None):
'''Instantiate the AudioConvRNN architecture,
optionally loading weights pre-trained
on Million Song Dataset. Note that when using TensorFlow,
for best performance you should set
`image_dim_ordering="tf"` in your Keras config
at ~/.keras/keras.json.
The model and the weights are compatible with both
TensorFlow and Theano. The dimension ordering
convention used by the model is the one
specified in your Keras config file.
# Arguments
weights: one of `None` (random initialization)
or "imagenet" (pre-training on ImageNet).
input_tensor: optional Keras tensor (i.e. output of `layers.Input()`)
to use as image input for the model.
# Returns
A Keras model instance.
'''
if weights not in {'msd', None}:
raise ValueError('The `weights` argument should be either '
'`None` (random initialization) or `msd` '
'(pre-training on Million Song Dataset).')
# Determine proper input shape
if K.image_dim_ordering() == 'th':
input_shape = (1, 96, 1366)
else:
input_shape = (96, 1366, 1)
if input_tensor is None:
melgram_input = Input(shape=input_shape)
else:
if not K.is_keras_tensor(input_tensor):
melgram_input = Input(tensor=input_tensor, shape=input_shape)
else:
melgram_input = input_tensor
# Determine input axis
if K.image_dim_ordering() == 'th':
channel_axis = 1
freq_axis = 2
time_axis = 3
else:
channel_axis = 3
freq_axis = 1
time_axis = 2
# Input block
x = ZeroPadding2D(padding=(0, 37))(melgram_input)
x = BatchNormalization(axis=time_axis, name='bn_0_freq')(x)
# Conv block 1
x = Convolution2D(64, 3, 3, border_mode='same', name='conv1')(x)
x = BatchNormalization(axis=channel_axis, mode=2, name='bn1')(x)
x = ELU()(x)
x = MaxPooling2D((2, 2), strides=(2, 2), name='pool1')(x)
x = Dropout(0.5, name='dropout1')(x)
# Conv block 2
x = Convolution2D(128, 3, 3, border_mode='same', name='conv2')(x)
x = BatchNormalization(axis=channel_axis, mode=2, name='bn2')(x)
x = ELU()(x)
x = MaxPooling2D((3, 3), strides=(3, 3), name='pool2')(x)
x = Dropout(0.5, name='dropout2')(x)
# Conv block 3
x = Convolution2D(128, 3, 3, border_mode='same', name='conv3')(x)
x = BatchNormalization(axis=channel_axis, mode=2, name='bn3')(x)
x = ELU()(x)
x = MaxPooling2D((4, 4), strides=(4, 4), name='pool3')(x)
x = Dropout(0.5, name='dropout3')(x)
# Conv block 4
x = Convolution2D(128, 3, 3, border_mode='same', name='conv4')(x)
x = BatchNormalization(axis=channel_axis, mode=2, name='bn4')(x)
x = ELU()(x)
x = MaxPooling2D((4, 4), strides=(4, 4), name='pool4')(x)
x = Dropout(0.5, name='dropout4')(x)
# reshaping
if K.image_dim_ordering() == 'th':
x = Permute((3, 1, 2))(x)
x = Reshape((15, 128))(x)
# GRU block 1, 2, output
x = GRU(32, return_sequences=True, name='gru1')(x)
x = GRU(32, return_sequences=False, name='gru2')(x)
x = Dropout(0.3)(x)
x = Dense(50, activation='sigmoid', name='output')(x)
# Create model
model = Model(melgram_input, x)
if True:
model.load_weights('data/%s_weights_%s.h5' % ('rnn', K._BACKEND))
return model
else: # This is for keras-application
# Load input
if K._BACKEND == 'theano':
weights_path = get_file('rnn_weights_theano.h5',
TH_WEIGHTS_PATH,
cache_subdir='models')
else:
weights_path = get_file('rnn_weights_tensorflow.h5',
TF_WEIGHTS_PATH,
cache_subdir='models')
model.load_weights(weights_path)
return model