-
Notifications
You must be signed in to change notification settings - Fork 384
/
Copy pathconvert_for_inference.py
executable file
·49 lines (37 loc) · 1.71 KB
/
convert_for_inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
#!/usr/bin/env python3
"""Converts a k-diffusion training checkpoint to a slim inference checkpoint."""
import argparse
import json
from pathlib import Path
import sys
import torch
import safetensors.torch as safetorch
def main():
p = argparse.ArgumentParser(description=__doc__,
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
p.add_argument("checkpoint", type=Path,
help="the training checkpoint to convert")
p.add_argument("--config", type=Path,
help="override the checkpoint's configuration")
p.add_argument("--output", "-o", type=Path,
help="the output slim checkpoint")
p.add_argument("--dtype", type=str, choices=["fp32", "fp16", "bf16"], default="fp16",
help="the output dtype")
args = p.parse_args()
print(f"Loading training checkpoint {args.checkpoint}...", file=sys.stderr)
ckpt = torch.load(args.checkpoint, map_location="cpu")
config = ckpt.get("config", None)
model_ema = ckpt["model_ema"]
del ckpt
if args.config:
config = json.loads(args.config.read_text())
if config is None:
raise ValueError("No configuration found in checkpoint and no override provided")
dtype = {"fp32": torch.float32, "fp16": torch.float16, "bf16": torch.bfloat16}[args.dtype]
model_ema = {k: v.to(dtype) for k, v in model_ema.items()}
output_path = args.output or args.checkpoint.with_suffix(".safetensors")
metadata = {"config": json.dumps(config, indent=4)}
print(f"Saving inference checkpoint to {output_path}...", file=sys.stderr)
safetorch.save_file(model_ema, output_path, metadata=metadata)
if __name__ == "__main__":
main()