-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathattack.sage
150 lines (136 loc) · 3.1 KB
/
attack.sage
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
#XZ-arithmetic using Montgomery Ladder
#Alg. 3, A.3, A.5 from "Fast Elliptic Curve Multiplications Resistant against Side Channel Attacks" by Tetsuya IZU and Tsuyoshi TAKAGI
def xECDBL(P,EC):
A,B = EC
R1,R2 = P
#########
R3 = R1^2
R4 = R2^2
R5 = R4*A
R6 = R4*B
R4 = R6*R4
R2 = R1*R2
R1 = R3-R5
R5 = R3+R5
R1 = R1^2
R3 = R6*R2
R3 = R3+R3
R3 = R3+R3
R3 = R3+R3
R1 = R1-R3
R5 = R5*R2
R4 = R5+R4
R4 = R4+R4
R4 = R4+R4
return (R1,R4)
def xECADD(P,Q,x,EC):
A,B = EC
R1,R2 = P
R3,R4 = Q
#########
R5 = R1*R3
R6 = R2*R4
R1 = R1*R4
R2 = R2*R3
R3 = A*R6
R4 = R5-R3
R4 = R4^2
R5 = B*R6
R5 = R5+R5
R5 = R5+R5
R6 = R1+R2
R6 = R5*R6
R6 = R4-R6
R5 = R1-R2
R5 = R5^2
R5 = R5*x
return (R6,R5)
def ladder(k,P,EC):
d = k.bits()
n = len(d)
Q = [0,0,0]
Q[0] = P
Q[1] = xECDBL(P,EC)
for i in range(n-2,-1,-1):
Q[2] = xECDBL(Q[d[i]],EC)
Q[1] = xECADD(Q[0], Q[1], P[0], EC)
Q[0] = Q[2-d[i]]
Q[1] = Q[1+d[i]]
return Q[0]
#Inversion in ZN(j)
def inv(v):
R = parent(v)
P.<x> = Integers()[]
g,a,b = xgcd(P(list(v)),P(R.modulus()))
try:
assert(g.degree() == 0)
except:
print(v, "is a divisor of zero. A factor of HD(x) is ", g)
return R(a*inverse_mod(ZZ(g),N))
def get_curve(N,D):
Zn = Integers(N)
if D == -3:
c = Zn.random_element()
A = 0
B = c**3
print("c : ", c)
return ([A,B],Zn)
if D == -4:
c = Zn.random_element()
A = -c
B = 0
print("c : ", c)
return ([A,B],Zn)
else:
PZn.<x> = PolynomialRing(Zn)
HD = hilbert_class_polynomial(D)
R.<j> = QuotientRing(PZn, PZn.ideal(HD))
k = j*inv(j-1728)
c = Zn.random_element()
A = -3*k*c**2
B = 2*k*c**3
return ([A,B],R)
def random_twist(N,EC):
A,B = EC
while True:
c = Integers(N).random_element()
if c != 0:
break
if D == -4:
A = -c
B = 0
else:
A *= c**2
B *= c**3
return ([A,B])
def genFB(bound, D):
FB = {a**2 + abs(D)*b**2 : (a,b) for a in range(bound) for b in range(bound) if (is_prime(a**2 + abs(D)*b**2)) and ((a**2 + abs(D)*b**2)%4 == 1 if (D == -4) else 1)}
FB[(D % 2) + abs(D)] = (D % 2, 1)
return FB
####################
#p = 10069891168272853289682414533444101158961971160721810960425299727500040856155399910408097910806556095082529154204912221872656086515020034916524535013055607
#q = 9163585010630240914315854502079840960495506763984904313022218586074134346260658498746192771596180175665775150505169330955024838846917582563246839347729083
#N = p*q
N = 108218055286220658892305686966796450005656093853561880573303757779870852502715750896717380601416332282635416751505870710179577464401193642824027551121223839066820321283484303809645541513752756237536860056248506557928305788452287016998812668348785242282044946059872302424866654255328887383184108204782014745221
D = -107
bound = 2^8
FB = genFB(bound,D)
ell = 2
k = prod(FB.keys())**ell
Zn = Integers(N)
PZn.<x> = PolynomialRing(Zn)
HD = PZn(hilbert_class_polynomial(D))
EC,R = get_curve(N,D)
while True:
P = (Zn.random_element(), Zn(1))
Q = ladder(k,P,EC)
Qz = PZn(list(R(Q[1])))
g = gcd(Qz.resultant(HD),N)
if g not in [1,N]:
break
else:
EC = random_twist(N,EC)
p,q = ZZ(g),N//ZZ(g)
assert N == p*q
print("p = ",p)
print("q = ",q)