-
Notifications
You must be signed in to change notification settings - Fork 1
/
script.py
174 lines (136 loc) · 6.76 KB
/
script.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
import math
import matplotlib.axes as ax
import matplotlib.pyplot as plt
import numpy as np
import scipy.optimize._minimize
from scipy.optimize import Bounds
from scipy.optimize import NonlinearConstraint
from scipy.optimize import LinearConstraint
from shapely.geometry import LineString
global positionPoints, errorConst
positionPoints = [ [ [0, 0, 0, 0.75], [0, 0, 0, 0.1] ], [ [0, 0, 0, 0.5], [0, 0, 0, 0.5] ], [ [0, 0, 0, 0.2], [0, 0, 0, 0.6] ] ]
errorConst = 99999
def ccw(A,B,C):
return (C.y-A.y) * (B.x-A.x) > (B.y-A.y) * (C.x-A.x)
# Return true if line segments AB and CD intersect
def intersect(A,B,C,D):
return ccw(A,C,D) != ccw(B,C,D) and ccw(A,B,C) != ccw(A,B,D)
def get_intersections(x0, y0, r0, x1, y1, r1):
# circle 1: (x0, y0), radius r0
# circle 2: (x1, y1), radius r1
d=math.sqrt((x1-x0)**2 + (y1-y0)**2)
# non intersecting
if d > r0 + r1 :
return None
# One circle within other
if d < abs(r0-r1):
return None
# coincident circles
if d == 0 and r0 == r1:
return None
else:
a=(r0**2-r1**2+d**2)/(2*d)
h=math.sqrt(r0**2-a**2)
x2=x0+a*(x1-x0)/d
y2=y0+a*(y1-y0)/d
x3=x2+h*(y1-y0)/d
y3=y2-h*(x1-x0)/d
x4=x2-h*(y1-y0)/d
y4=y2+h*(x1-x0)/d
return (x3, y3, x4, y4)
def calcMidPt( x1, x2 ): #calculates the midpoint of an arm given the x positions at both ends
midX = ( x2 + x1 )/2
return midX
def mass( p, l ): #calculates mass of each arm based on length and its density
return p * l
def force( aMass ): #calculates force using mass and gravity constant (9.81N/kG)
return aMass * 9.81
def calculateTorque2( armLengths ):
gripperForce = 5 * 9.81
gripperAngles = [ -math.pi/3.0 , 0, math.pi/4.0 ]
torques = [ 0, 0, 0 ]
intersections = []
for i in range( 3 ): #iterates once for each position the arm must reach
positionPoints[ i ][ 0 ][ 2 ] = positionPoints[ i ][ 0 ][3] - (armLengths[ 2 ] * abs(math.cos(gripperAngles[ i ])))
positionPoints[ i ][ 1 ][ 2 ] = positionPoints[ i ][ 1 ][3] - (armLengths[ 2 ] * math.sin(gripperAngles[ i ]))
midPts = [ [ ], [ ], [ ] ]
positionPoints[i][0][1], positionPoints[i][1][1], x2, y2 = get_intersections(0, 0, armLengths[ 0 ], positionPoints[ i ][ 0 ][ 2 ], positionPoints[ i ][ 1 ][ 2 ], armLengths[ 1 ])
armMasses = [ 0, 0, 0]
a = 4
for l in range( 3 ):
armMasses[ l ] = mass( a, armLengths[ l ] )
a /= 2
#calculate the gravity forces of each member
gravForces = [ 0, 0, 0 ]
for k in range( 3 ):
gravForces[ k ] = force( armMasses[ k ])
#calculate the midpoints of each member, this is where the gravity force acts.
midPts[ 0 ] = calcMidPt( 0, positionPoints[i][0][1] )
midPts[ 1 ] = calcMidPt( positionPoints[i][0][1], positionPoints[i][0][2] )
midPts[ 2 ] = calcMidPt( positionPoints[i][0][2], positionPoints[i][0][3] )
#compare the torque of the 2 possible points the circles intersect. 2 possible positions for point A.
torque1 = gravForces[ 0 ] * calcMidPt( 0, positionPoints[i][0][1] ) + gravForces[ 1 ] * calcMidPt( positionPoints[i][0][1], positionPoints[i][0][2] )
torque2 = gravForces[ 0 ] * calcMidPt( 0, x2 ) + gravForces[ 1 ] * calcMidPt( x2, positionPoints[i][0][2] )
#use the position which required the least torque for equilibirum
if ( ( ( torque2 < torque1) and ( y2 > 0)) or ( positionPoints[i][1][1] < 0 ) ):
positionPoints[i][0][1] = x2
positionPoints[i][1][1] = y2
midPts[0] = calcMidPt( 0, x2 )
midPts[1] = calcMidPt( x2, positionPoints[i][0][2] )
#creates two line segments and checks if they intersect (only checks first and third lengths)
Segment1 = LineString([(0,0), (positionPoints[i][0][1], positionPoints[i][1][1])])
Segment2 = LineString([(positionPoints[i][0][2], positionPoints[i][1][2]), (positionPoints[i][0][3], positionPoints[i][1][3])])
#array of true or falses for intersection
intersections.append(Segment1.intersects(Segment2))
for j in range( 0, 3): #Add all the torque required for the three arms
torques[ i ] += ( gravForces[ j ] * midPts[ j ] )
torques[ i ] += ( gripperForce * positionPoints[ i ][0][3] ) #add the torque of the 5kg mass the arm holds
#calculate the total torque of all 3 positions combined
finalTorque = math.sqrt( torques[ 0 ]**2 + torques[ 1 ]**2 + torques[ 2 ]**2 )
#print the torques and points for all positions
print( "Position 1 torque", torques[0] )
print( "Position 2 torque", torques[1] )
print( "Position 3 torque", torques[2] )
print("")
print(armLengths)
print()
for i in range(len(positionPoints)):
print("Position " + str(i+1) + ":")
print("Origin: (" + str(positionPoints[i][0][0]) + "," + str(positionPoints[i][1][0])+ ")")
print("A: (" + str(positionPoints[i][0][1]) + "," + str(positionPoints[i][1][1])+ ")")
print("B: (" + str(positionPoints[i][0][2]) + "," + str(positionPoints[i][1][2])+ ")")
print("C: (" + str(positionPoints[i][0][3]) + "," + str(positionPoints[i][1][3])+ ")")
print("\n")
print("Final Torque:" + str(finalTorque))
print()
#if in any of the positions have intersecting lines output a high error torque
for i in range(3):
if(intersections[i] == True):
finalTorque = errorConst
return finalTorque
# best lengths tested (to plot)
testLengths = [1.0821468359052653, 1.0641662437491748, 0.6427511332656937]
fTorque = calculateTorque2(testLengths)
print("Final combined torque", fTorque)
#Linear constraints and bounds
cnstrnts = LinearConstraint( [ [ 1, 1, 1 ], [ -1, 1, 0 ], [ 0, 0, 1] ], [ 1, -0.3, 0 ], [ np.Inf, 0.3, 0.35 ], keep_feasible=True )
bnds = Bounds( [ 0, 0, 0 ], [ 10,10,10 ], keep_feasible=True)
#results = scipy.optimize.minimize(calculateTorque2, testLengths, method="trust-constr", bounds=bnds, constraints=cnstrnts, options={"maxiter" : 10000})
#print(results)
#set plot limits and apply a grid
plt.xlim = 0.9
plt.ylim = 0.9
plt.grid()
#round points to make graph less crowded when plotting
for i in range(len(positionPoints)):
for j in range(3):
x = round(positionPoints[i][0][j+1],2)
y = round(positionPoints[i][1][j+1],2)
plt.text(positionPoints[i][0][j+1], positionPoints[i][1][j+1], "("+str(x)+","+str(y)+")")
#plot points, ensure axes are equal and make the legend visible
plt.plot( positionPoints[0][0], positionPoints[0][1], label = "Pos 1")
plt.plot( positionPoints[1][0], positionPoints[1][1], label = "Pos 2")
plt.plot( positionPoints[2][0], positionPoints[2][1], label = "Pos 3")
plt.axis('equal')
plt.legend()
plt.show()