Skip to content

Latest commit

 

History

History
40 lines (28 loc) · 1.67 KB

File metadata and controls

40 lines (28 loc) · 1.67 KB

csabAIbio 1st place solution for Nightingale High Risk Breast Cancer Prediction Contest 1

Data processing

  • generate .npy files from level4/level5/level7 images from the original ndpi files - big images

    • patch_gen/generate_lvl4_npy.py
    • patch_gen/generate_lvl5_npy.py
    • patch_gen/generate_lvl7_npy.py
  • generate slide bags (.npy format) from level4/level5 images (.npy format) that includes all the non-masked patches in a shape of 224x224x3 with the masking made on level 7

    • patch_gen/generate_all_patches_maskimproved_lvl7_fromnpy.py (run with level4/level5)
  • generate .npy files from level4/level5/level7 of the original svs bracs images

    • bracs/bracs_save_level4equivalent.ipynb
    • bracs/bracs_save_level5equivalent.ipynb
    • bracs/bracs_save_level7equivalent.ipynb
  • extract 224x224x3 sized patches from bracs images within annotations

    • bracs/bracs_extract_patches_from_roi_with_mask_level4.ipynb
  • train embedder/classifier on bracs dataset (for transfer learning)

    • bracs/bracs_level4_train_embeddings.ipynb
  • generate embeddings from slide bags (.npy format) with ImageNet embedder/classifier

    • patch_gen/imagenet_embedding_generator.py
  • generate embeddings from slide bags (.npy format) with bracs embedder/classifier

    • patch_gen/bracs_embedding_generator.py
  • reorganise data into biopsy bags with the corresponding patches and generate train/valid folds

    • re_pack_biopsies_training.ipynb -> test_biopsy_unbalenced.csv, train_biopsy_unbalenced.csv
    • re_pack_biopsies_holdout.ipynb -> final_splits/HOLD_OUT.csv

Training

  • BiopsyMIL_efficientloader.py (uses model.py)

Prediction

  • inference.ipynb
  • ensemble_optim.ipynb