-
Notifications
You must be signed in to change notification settings - Fork 0
/
allochthonous_boulders_for_paleohydrology.m
418 lines (331 loc) · 13.9 KB
/
allochthonous_boulders_for_paleohydrology.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
% ¦PALEOHYDROLOGICAL FLOOD FLOW RECONSTRUCTION FROM BOULDER SIZE IN A
% FLUVIAL CHANNEL USING INPUT DATA FROM SURVEYED BOULDERS AND ASSOCIATED
% CHANNEL REACHES¦
%
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
%
% Use ¦ plot_Q_and_h.m ¦ script for plotting!
%
% Use ¦ compare_VQh.m ¦ script for better...
%
% comparision of the three different approaches: Costa (1983), Clarke
% (1996), and Alexander & Cooker(2016) and visualization.
%
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
% This Matlab® script calculates...
%
%
% (1) peak fluid-flow velocities
%
%
% of a flood flow for a input set of...
%
% - boulder diameters of allochthonous, fluvial transported
% boulders and
% - associated estimated boulder rock material densities
%
% by applying approaches after Costa (1983), Clarke (1996), and
% Alexander & Cooker(2016). These approaches are following the incipient
% motion principle: maximum transported grain sizes represent maximum flow
% conditions in a fluvial channel.
%
% Furthermore this script utilizes the Rosenwinkel et al. (2017)'s code
% manningseq.m, which applies the empirical Gauckler–Manning–Strickler
% formula to an...
%
% - input topographic cross-sections and
% - associated channel bed slopes
%
% expressing an approximation of a fluvial channel geometry,
% to calculate...
%
%
% (2) peak discharges and
%
% (3) maximum flow height
%
%
% able to sustain transport for the input set of boulder
% diameters and densities.
%
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
% Velocities employed to the Gauckler–Manning–Strickler formula are
% defined as cross-sectional average flow velocities.
% Be aware that the fluid flow velocities derived by the three different
% approaches mentioned above are not implicitly defined as cross-sectional
% average flow velocities! Costa (1983) and Clarke (1996), use an upscaling
% from bed or critical velocity by a factor 1.2 to estimate "average
% velocity". Alexander & Cooker (2016) define their velocity as fluid
% velocity incident on one boulder (conversion is omitted for the
% computation that is set in this code here).
%
% Turbulent, Newtonian fluid flow behaviour is assumed for the calculations
% below. Calculations are not applicable for non-Newtonian, plastic fluids
% that perform laminar flow due to the establishment of shear strength in
% the fluid material.
%
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
% The function 'manningseq.m' required for this script uses itself the
% function 'getdistance2.m', which can be requested by the author, and the
% function 'fminsearchbnd.m' by John D'Errico, which is available on the
% Mathworks® File Exchange
% (http://www.mathworks.com/matlabcentral/fileexchange/8277).
%
% Look into read_me.docx file for further details and reference.
%
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
% Input:
%
% - excel® table
% ¦ boulders_import.xlsx ¦
%
% with input set of boulder diameters and associated estimated boulder
% rock material densities
%
% - excel® table
% ¦ topoprofile_import.xlsx ¦
%
% with input topographic cross-sections (d, z) associated and channel bed
% slope (S)
%
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
% Output:
%
% - excel® table
% ¦ paleohydrology_results_from_boulders.xlsx ¦
%
%
% (1) peak cross-sectional fluid-flow velocities of Costa (1983), Clarke
% (1996), and Alexander & Cooker(2016) approaches (V) for the input
% set of boulder diameters/densities
%
% (2) peak discharges (Q_eg) from Costa (1983), Clarke (1996), and
% Alexander & Cooker(2016) approaches for the input set of
% boulder diameters/densities and corresponding input topographic
% profile data (incl. channel bed slope) applied
%
% (3) maximum flow height (h_eg) from Costa (1983), Clarke (1996), and
% Alexander & Cooker(2016) approaches for the input set of
% boulder diameters/densities and corresponding input topographic
% profile data (incl. channel bed slope) applied
%
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
% Author: Marius Huber, ETH Zurich 2018 ([email protected])
%
% Have fun!
%% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
% Let's start!
clear all
clc
close all
%myFilePath = 'C:\Users\Marius\Documents\ETH\Masterarbeit';
%addpath(myFilePath)
%addpath(genpath(myFilePath))
%% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
% define basic parameters
rho_f = 1500; % flood water density [kg/m^3]
g = 9.81; % gravitational acceleration [m/s^2]
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
%for manningseq.m function,
n = 0.04; % Manning's roughness coefficient for mountain
% streams (Chow, 1959), [s/(m^(1/3))]
%% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
% input data
% ¦boulder diameters in [m] (maximum diameters) and¦
% ¦ density of boulder rock material [kg/m^3] ¦
% input excel spreadsheet
filenames.boulders = 'boulders_import_centralNepal.xlsx';
% adjust to appropriate filename!
[boulders_num, boulders_txt] = xlsread(filenames.boulders); %read file
boulders.names = boulders_txt(4:end,1);
boulders.diameters = boulders_num(1:end,1);
boulders.densities = boulders_num(1:end,2);
boulders.topos = boulders_txt(4:end,4);
clearvars boulders_num boulders_txt
bouldercount= length(boulders.topos);
for i= 1:bouldercount
boulders.topos_seperate{i,1} = ...
strsplit(boulders.topos{i,1},',');
end
clearvars i
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
% ¦topographic profiles¦
% input excel spreadsheet
filenames.topos = 'topoprofile_import_centralNepal.xlsx';
% adjust to appropriate filename!
[topos_num, topos_txt] = xlsread(filenames.topos); %read file
topocount = length(topos_txt(5,1:end))./3;
for i = 1:topocount %#ok<BDSCI>
topos.names{i} = topos_txt(3,(i-1)*3+1);
topos.coordinates{i} = topos_txt(4,(i-1)*3+1);
topos.distances{i} = topos_num(1:end,(i-1)*3+1);
topos.elevations{i} = topos_num(1:end,(i-1)*3+2);
topos.slopes{i} = topos_num(1,(i-1)*3+3);
end
clearvars i topos_num topos_txt
%% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
% velocity calculations
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
% Empirical approach after Costa (1983)
% (see function 'empiricalCosta1983.m' for more details).
V.Costa = empiricalCosta1983(boulders.diameters);
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
% Force balance approach followed by Clarke (1996)
% (see function 'Clarke1996.m' for more details).
% calculation loop
for i = 1:bouldercount
for j = 1:length(boulders.topos_seperate{i,1})
for k = 1:length(topos.names)
if strcmp(string(boulders.topos_seperate{i,1}{1,j}), string(k))
V.Clarke(i,j) = Clarke1996(boulders.diameters(i),...
topos.slopes{1,k},boulders.densities(i),rho_f,g);
end
end
end
end
% Arithmetic mean from slope values of different profiles used for
% calculation
for i = 1:bouldercount
for j = 1:length(boulders.topos_seperate{i,1})
V.Clarke_arithmean(i,1) = mean(V.Clarke(i,1:j));
end
end
clearvars i j k
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
% Force balance approach after Alexander & Cooker (2016)
% (see function 'AlexanderCooker2016' for more details).
V.Alexander = ...
AlexanderCooker2016(boulders.diameters,boulders.densities,rho_f,g);
%% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
% discharge calculations
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
% Preparation of topo data for calculation loops below
% (cut NANs in distance and elevation arrays).
for i = 1:topocount %#ok<BDSCI>
topos.distances{1,i}(isnan(topos.distances{1,i}))=[];
topos.elevations{1,i}(isnan(topos.elevations{1,i}))=[];
end
clearvars i
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
% Empirical approach after Costa (1983)
% calculation loop
for i = 1:bouldercount
for j = 1:length(boulders.topos_seperate{i,1})
for k = 1:length(topos.names)
if strcmp(string(boulders.topos_seperate{i,1}{1,j}), string(k))
[Q.Costa(i,j),h.Costa(i,j)] = ...
manningseq(V.Costa(i,1),topos.slopes{1,k},n,topos.distances{1,k},...
topos.elevations{1,k},false);
end
end
end
end
% Arithmetic mean from values of different profiles used for calculation
for i = 1:bouldercount
for j = 1:length(boulders.topos_seperate{i,1})
Q.Costa_arithmean(i,1) = mean(Q.Costa(i,1:j));
h.Costa_arithmean(i,1) = mean(h.Costa(i,1:j));
end
end
clearvars i j k
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
% Force balance approach followed by Clarke (1996)
% calculation loop
for i = 1:bouldercount
for j = 1:length(boulders.topos_seperate{i,1})
for k = 1:length(topos.names)
if strcmp(string(boulders.topos_seperate{i,1}{1,j}), string(k))
[Q.Clarke(i,j),h.Clarke(i,j)] = ...
manningseq(V.Clarke(i,j),topos.slopes{1,k},n,topos.distances{1,k},...
topos.elevations{1,k},false);
end
end
end
end
% Arithmetic mean from values of different profiles used for calculation
for i = 1:bouldercount
for j = 1:length(boulders.topos_seperate{i,1})
Q.Clarke_arithmean(i,1) = mean(Q.Clarke(i,1:j));
h.Clarke_arithmean(i,1) = mean(h.Clarke(i,1:j));
end
end
clearvars i j k
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
% Force balance approach after Alexander & Cooker (2016)
% calculation loop
for i = 1:bouldercount
for j = 1:length(boulders.topos_seperate{i,1})
for k = 1:length(topos.names)
if strcmp(string(boulders.topos_seperate{i,1}{1,j}), string(k))
[Q.Alexander(i,j),h.Alexander(i,j)] = ...
manningseq(V.Alexander(i,1),topos.slopes{1,k},n,topos.distances{1,k},...
topos.elevations{1,k},false);
end
end
end
end
% Arithmetic mean from values of different profiles used for calculation
for i = 1:bouldercount
for j = 1:length(boulders.topos_seperate{i,1})
Q.Alexander_arithmean(i,1) = mean(Q.Alexander(i,1:j));
h.Alexander_arithmean(i,1) = mean(h.Alexander(i,1:j));
end
end
clearvars i j k
%% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
% export data
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
% Compiling output table
column_headings = {...
'sample name', ...
'boulder diameter [m]', ...
'density of boulder rock material [kg/m^3]', ...
'topoprofiles used for calculation', ...
'flow velocity [m/s] (averaged), Costa (1983)', ...
'flow velocity [m/s] (averaged), Clarke (1996)', ...
'flow velocity [m/s], Alexander&Cooker (2016)', ...
'flow discharge [m^3/s], Costa (1983)', ...
'flow discharge [m^3/s], Clarke (1996)', ...
'flow discharge [m^3/s], Alexander&Cooker (2016)', ...
'flow height [m], Costa (1983)', ...
'flow height [m], Clarke (1996)', ...
'flow height [m], Alexander&Cooker (2016)'};
export_data = zeros(bouldercount+1, length(column_headings));
export_data = num2cell(export_data);
export_data(1,:) = column_headings;
export_data(2:end,1) = boulders.names;
export_data(2:end,2) = num2cell(boulders.diameters);
export_data(2:end,3) = num2cell(boulders.densities);
export_data(2:end,4) = boulders.topos;
export_data(2:end,5) = num2cell(V.Costa);
export_data(2:end,6) = num2cell(V.Clarke_arithmean);
export_data(2:end,7) = num2cell(V.Alexander);
export_data(2:end,8) = num2cell(Q.Costa_arithmean);
export_data(2:end,9) = num2cell(Q.Clarke_arithmean);
export_data(2:end,10) = num2cell(Q.Alexander_arithmean);
export_data(2:end,11) = num2cell(h.Costa_arithmean);
export_data(2:end,12) = num2cell(h.Clarke_arithmean);
export_data(2:end,13) = num2cell(h.Alexander_arithmean);
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
% Export data to Excel® spreadsheet file
filenames.export = 'paleohydrology_results_from_boulders.xlsx';
xlswrite(filenames.export,export_data,1)
%% -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
% References:
% Alexander, J. and Cooker, M.J., 2016. Moving boulders in flash floods and
% estimating flow conditions using boulders in ancient deposits.
% Sedimentology, 63(6): 1582-1595.
% Chow, V.T., 1959. Open channel hydraulics. McGraw-Hill Book Company,
% Inc; New York.
% Clarke, A.O., 1996. Estimating probable maximum floods in the Upper Santa
% Ana Basin, Southern California, from stream boulder size. Environmental
% & Engineering Geoscience, 2(2): 165-182.
% Costa, J.E., 1983. Paleohydraulic reconstruction of flash-flood peaks
% from boulder deposits in the Colorado Front Range. Geological Society
% of America Bulletin, 94(8): 986-1004.
% Rosenwinkel, S., Landgraf, A., Schwanghart, W., Volkmer, F., Dzhumabaeva,
% A., Merchel, S., Rugel, G., Preusser, F. and Korup, O., 2017. Late
% Pleistocene outburst floods from Issyk Kul, Kyrgyzstan? Earth Surface
% Processes and Landforms.
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
% Copyright (C) 2021 Marius Huber, full license notice in the read-me file