-
Notifications
You must be signed in to change notification settings - Fork 31
/
fridplotw.m
58 lines (52 loc) · 1.35 KB
/
fridplotw.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
function varargout=fridplotw(N,J,xyscale,varargin)
% [ph,W]=FRIDPLOTW(N,J,xyscale,'Property','Value')
%
% Plots a multiresolution wavelet decomposition grid
%
% INPUT:
%
% N The power of the dyadic subdivision [defaulted]
% J Maximum scale in both directions
% xyscale Where the grid should end up for real, see PLOTONCUBE
%
% 'Property' A list of handle properties
% 'Value ' A list of handle property values
%
% OUTPUT:
%
% ph Handles to the plotted graphics objects
% W A matrix with the coordinates of the square midpoints
%
% EXAMPLE:
%
% N=8; J=3; f=fridplotw(N,J);
%
% Last modified by fjsimons-at-mit.edu, 1/26/2011
% Here are all the intercepts
w=2.^(N-[0:J+1]);
rims=[0.5 sort(w(1:end-1)+0.5)];
grids=[pauli(rims,2) ; [0.5*ones(1,J+1) ; rims(2:end)]'];
defval('xyscale',[])
for in=1:size(grids,1)
if isempty(xyscale)
ph{in}=fridplot(grids(in,:),grids(in,:));
else
ph{in}=fridplot(xyscale(1)+grids(in,:)/max(grids(:))*[xyscale(2)-xyscale(1)],...
xyscale(4)-grids(in,:)/max(grids(:))*[xyscale(4)-xyscale(3)]);
end
hold on
end
if nargout==2
x=w(3:end);
v=[w(2:end-1)+x w(end)];
W=[v x v(1:end-1) ; v v(1:end-1) x];
else
W=NaN;
end
% Cosmetic adjustments
if nargin>3
set(cat(1,ph{:}),varargin{1:end})
end
% Prepare output
varn={ph,W};
varargout=varn(1:nargout);