-
Notifications
You must be signed in to change notification settings - Fork 4
/
train_Rain100H.py
139 lines (116 loc) · 5.85 KB
/
train_Rain100H.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import os
import argparse
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision.utils as utils
from torch.autograd import Variable
from torch.utils.data import DataLoader
from tensorboardX import SummaryWriter
from DerainDataset import prepare_data_Rain100H, Dataset
from utils import *
from torch.optim.lr_scheduler import MultiStepLR
from SSIM import *
from network import DRN, print_network
parser = argparse.ArgumentParser(description="DRN_train_Rain100H")
parser.add_argument("--preprocess", type=bool, default=True, help='run prepare_data or not')
parser.add_argument("--batchSize", type=int, default=16, help="Training batch size")
parser.add_argument("--intra_iter", type=int, default=7, help="Number of intra iteration")
parser.add_argument("--inter_iter", type=int, default=7, help="Number of inter iteration")
parser.add_argument("--epochs", type=int, default=100, help="Number of training epochs")
parser.add_argument("--milestone", type=int, default=[30,50,80], help="When to decay learning rate; should be less than epochs")
parser.add_argument("--lr", type=float, default=1e-3, help="Initial learning rate")
parser.add_argument("--save_folder", type=str, default="logs/Rain100H", help='path of log files')
parser.add_argument("--save_freq",type=int,default=1,help='save intermediate model')
parser.add_argument("--data_path",type=str, default="./train/RainTrainH",help='path to training data')
parser.add_argument("--use_GPU", type=bool, default=True, help='use GPU or not')
parser.add_argument("--gpu_id", type=str, default="0", help='GPU id')
opt = parser.parse_args()
if opt.use_GPU:
os.environ["CUDA_VISIBLE_DEVICES"] = opt.gpu_id
opt.save_folder = opt.save_folder + "_inter%d"%opt.inter_iter + "_intra%d"%opt.intra_iter
def main():
# Load dataset
print('Loading dataset ...\n')
dataset_train = Dataset(train=True, data_path=opt.data_path)
loader_train = DataLoader(dataset=dataset_train, num_workers=4, batch_size=opt.batchSize, shuffle=True)
print("# of training samples: %d\n" % int(len(dataset_train)))
# Build model
model = DRN(channel=3, inter_iter=opt.inter_iter, intra_iter=opt.intra_iter, use_GPU=opt.use_GPU)
print_network(model)
criterion = SSIM()
# Move to GPU
if opt.use_GPU:
model = model.cuda()
criterion.cuda()
# Optimizer
optimizer = optim.Adam(model.parameters(), lr=opt.lr)
scheduler = MultiStepLR(optimizer, milestones=opt.milestone, gamma=0.5) # learning rates
# training
writer = SummaryWriter(opt.save_folder)
step = 0
initial_epoch = findLastCheckpoint(save_dir=opt.save_folder) # load the last model in matconvnet style
if initial_epoch > 0:
print('resuming by loading epoch %03d' % initial_epoch)
model.load_state_dict(torch.load(os.path.join(opt.save_folder, 'net_epoch%d.pth' % initial_epoch)))
for epoch in range(initial_epoch, opt.epochs):
scheduler.step(epoch)
# set learning rate
for param_group in optimizer.param_groups:
print('learning rate %f' % param_group["lr"])
# train
for i, (input, target) in enumerate(loader_train, 0):
# training step
loss_list = []
model.train()
model.zero_grad()
optimizer.zero_grad()
input_train, target_train = Variable(input.cuda()), Variable(target.cuda())
out_train, outs = model(input_train)
pixel_loss = criterion(target_train, out_train)
for lossi in range(opt.inter_iter):
loss1 = criterion(target_train, outs[lossi])
loss_list.append(loss1)
loss = -pixel_loss
index = 0.1
for lossi in range(opt.inter_iter):
loss += -index * loss_list[lossi]
index = index + 0.1
loss.backward()
optimizer.step()
# results
model.eval()
out_train, _ = model(input_train)
out_train = torch.clamp(out_train, 0., 1.)
psnr_train = batch_PSNR(out_train, target_train, 1.)
print("[epoch %d][%d/%d] loss: %.4f, loss1: %.4f, loss2: %.4f, loss3: %.4f, loss4: %.4f, PSNR_train: %.4f" %
(epoch + 1, i + 1, len(loader_train), loss.item(), loss_list[0].item(), loss_list[1].item(), loss_list[2].item(),
loss_list[3].item(), psnr_train))
# print("[epoch %d][%d/%d] loss: %.4f, PSNR_train: %.4f" %
# (epoch + 1, i + 1, len(loader_train), loss.item(), psnr_train))
# if you are using older version of PyTorch, you may need to change loss.item() to loss.data[0]
if step % 10 == 0:
# Log the scalar values
writer.add_scalar('loss', loss.item(), step)
writer.add_scalar('PSNR on training data', psnr_train, step)
step += 1
## the end of each epoch
model.eval()
# log the images
out_train,_ = model(input_train)
out_train = torch.clamp(out_train, 0., 1.)
Img = utils.make_grid(target_train.data, nrow=8, normalize=True, scale_each=True)
Imgn = utils.make_grid(input_train.data, nrow=8, normalize=True, scale_each=True)
Irecon = utils.make_grid(out_train.data, nrow=8, normalize=True, scale_each=True)
writer.add_image('clean image', Img, epoch)
writer.add_image('noisy image', Imgn, epoch)
writer.add_image('reconstructed image', Irecon, epoch)
# save model
torch.save(model.state_dict(), os.path.join(opt.save_folder, 'net_latest.pth'))
if epoch % opt.save_freq == 0:
torch.save(model.state_dict(), os.path.join(opt.save_folder, 'net_epoch%d.pth' % (epoch+1)))
if __name__ == "__main__":
if opt.preprocess:
prepare_data_Rain100H(data_path=opt.data_path, patch_size=100, stride=80, aug_times=1)
main()