-
Notifications
You must be signed in to change notification settings - Fork 52
/
test_PReNet_r.py
91 lines (69 loc) · 2.84 KB
/
test_PReNet_r.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
import cv2
import os
import argparse
import glob
import numpy as np
import torch
from torch.autograd import Variable
from utils import *
from networks import *
import time
parser = argparse.ArgumentParser(description="PReNet_Test")
parser.add_argument("--logdir", type=str, default="logs/PReNet6/", help='path to model and log files')
parser.add_argument("--data_path", type=str, default="/media/r/BC580A85580A3F20/dataset/rain/peku/Rain100H/rainy", help='path to training data')
parser.add_argument("--save_path", type=str, default="/home/r/works/derain_arxiv/release/results/PReNet", help='path to save results')
parser.add_argument("--use_GPU", type=bool, default=True, help='use GPU or not')
parser.add_argument("--gpu_id", type=str, default="0", help='GPU id')
parser.add_argument("--recurrent_iter", type=int, default=6, help='number of recursive stages')
opt = parser.parse_args()
if opt.use_GPU:
os.environ["CUDA_VISIBLE_DEVICES"] = opt.gpu_id
def main():
os.makedirs(opt.save_path, exist_ok=True)
# Build model
print('Loading model ...\n')
model = PReNet_r(opt.recurrent_iter, opt.use_GPU)
print_network(model)
if opt.use_GPU:
model = model.cuda()
model.load_state_dict(torch.load(os.path.join(opt.logdir, 'net_latest.pth')))
model.eval()
time_test = 0
count = 0
for img_name in os.listdir(opt.data_path):
if is_image(img_name):
img_path = os.path.join(opt.data_path, img_name)
# input image
y = cv2.imread(img_path)
b, g, r = cv2.split(y)
y = cv2.merge([r, g, b])
#y = cv2.resize(y, (int(500), int(500)), interpolation=cv2.INTER_CUBIC)
y = normalize(np.float32(y))
y = np.expand_dims(y.transpose(2, 0, 1), 0)
y = Variable(torch.Tensor(y))
if opt.use_GPU:
y = y.cuda()
with torch.no_grad(): #
if opt.use_GPU:
torch.cuda.synchronize()
start_time = time.time()
out, _ = model(y)
out = torch.clamp(out, 0., 1.)
if opt.use_GPU:
torch.cuda.synchronize()
end_time = time.time()
dur_time = end_time - start_time
time_test += dur_time
print(img_name, ': ', dur_time)
if opt.use_GPU:
save_out = np.uint8(255 * out.data.cpu().numpy().squeeze()) #back to cpu
else:
save_out = np.uint8(255 * out.data.numpy().squeeze())
save_out = save_out.transpose(1, 2, 0)
b, g, r = cv2.split(save_out)
save_out = cv2.merge([r, g, b])
cv2.imwrite(os.path.join(opt.save_path, img_name), save_out)
count += 1
print('Avg. time:', time_test/count)
if __name__ == "__main__":
main()