-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathgconv_standalone.py
485 lines (417 loc) · 16.7 KB
/
gconv_standalone.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
# Modified from S4: https://github.com/HazyResearch/state-spaces/blob/main/src/models/sequence/ss/s4.py
# We will release the whole codebase upon acceptance.
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.nn.utils as U
from einops import rearrange, repeat
from omegaconf import DictConfig
import opt_einsum as oe
import numpy as np
from IPython import embed
from functools import partial
optimized = True
if optimized:
contract = oe.contract
else:
contract = torch.einsum
def get_initializer(name, activation=None):
if activation in [ None, 'id', 'identity', 'linear', 'modrelu' ]:
nonlinearity = 'linear'
elif activation in ['relu', 'tanh', 'sigmoid']:
nonlinearity = activation
elif activation in ['gelu', 'swish', 'silu']:
nonlinearity = 'relu' # Close to ReLU so approximate with ReLU's gain
else:
raise NotImplementedError(f"get_initializer: activation {activation} not supported")
if name == 'uniform':
initializer = partial(torch.nn.init.kaiming_uniform_, nonlinearity=nonlinearity)
elif name == 'normal':
initializer = partial(torch.nn.init.kaiming_normal_, nonlinearity=nonlinearity)
elif name == 'xavier':
initializer = torch.nn.init.xavier_normal_
elif name == 'zero':
initializer = partial(torch.nn.init.constant_, val=0)
elif name == 'one':
initializer = partial(torch.nn.init.constant_, val=1)
else:
raise NotImplementedError(f"get_initializer: initializer type {name} not supported")
return initializer
class modrelu(nn.Module):
def __init__(self, features):
# For now we just support square layers
super(modrelu, self).__init__()
self.features = features
self.b = nn.Parameter(torch.Tensor(self.features))
self.reset_parameters()
def reset_parameters(self):
self.b.data.uniform_(-0.01, 0.01)
def forward(self, inputs):
norm = torch.abs(inputs)
biased_norm = norm + self.b
magnitude = nn.functional.relu(biased_norm)
phase = torch.sign(inputs)
return phase * magnitude
class Modrelu(modrelu):
def reset_parameters(self):
self.b.data.uniform_(-0.01, 0.01)
class TransposedLinear(nn.Module):
""" Linear module on the second-to-last dimension
Assumes shape (B, D, L), where L can be 1 or more axis
"""
def __init__(self, d_input, d_output, bias=True):
super().__init__()
self.weight = nn.Parameter(torch.empty(d_output, d_input))
# nn.Linear default init
nn.init.kaiming_uniform_(self.weight, a=math.sqrt(5))
# nn.init.kaiming_uniform_(self.weight, nonlinearity='linear') # should be equivalent
if bias:
self.bias = nn.Parameter(torch.empty(d_output))
bound = 1 / math.sqrt(d_input)
nn.init.uniform_(self.bias, -bound, bound)
setattr(self.bias, "_optim", {"weight_decay": 0.0})
else:
self.bias = 0.0
def forward(self, x):
num_axis = len(x.shape[2:]) # num_axis in L, for broadcasting bias
y = contract('b u ..., v u -> b v ...', x, self.weight) + \
self.bias.view(-1, *[1]*num_axis)
return y
class TransposedLN(nn.Module):
""" LayerNorm module over second dimension
Assumes shape (B, D, L), where L can be 1 or more axis
This is slow and a dedicated CUDA/Triton implementation shuld provide substantial end-to-end speedup
"""
def __init__(self, d, scalar=True):
super().__init__()
self.scalar = scalar
if self.scalar:
self.m = nn.Parameter(torch.zeros(1))
self.s = nn.Parameter(torch.ones(1))
setattr(self.m, "_optim", {"weight_decay": 0.0})
setattr(self.s, "_optim", {"weight_decay": 0.0})
else:
self.ln = nn.LayerNorm(d)
def forward(self, x):
if self.scalar:
# calc. stats over D dim / channels
s, m = torch.std_mean(x, dim=1, unbiased=False, keepdim=True)
y = (self.s/s) * (x-m+self.m)
else:
# move channel to last axis, apply layer_norm, then move channel back to second axis
_x = self.ln(rearrange(x, 'b d ... -> b ... d'))
y = rearrange(_x, 'b ... d -> b d ...')
return y
def Activation(activation=None, size=None, dim=-1):
if activation in [None, 'id', 'identity', 'linear']:
return nn.Identity()
elif activation == 'tanh':
return nn.Tanh()
elif activation == 'relu':
return nn.ReLU()
elif activation == 'gelu':
return nn.GELU()
elif activation in ['swish', 'silu']:
return nn.SiLU()
elif activation == 'glu':
return nn.GLU(dim=dim)
elif activation == 'sigmoid':
return nn.Sigmoid()
elif activation == 'modrelu':
return Modrelu(size)
elif activation == 'sqrelu':
return SquaredReLU()
elif activation == 'ln':
return TransposedLN(dim)
else:
raise NotImplementedError(
"hidden activation '{}' is not implemented".format(activation))
def LinearActivation(
d_input, d_output, bias=True,
zero_bias_init=False,
transposed=False,
initializer=None,
activation=None,
activate=False, # Apply activation as part of this module
weight_norm=False,
**kwargs,
):
""" Returns a linear nn.Module with control over axes order, initialization, and activation """
# Construct core module
# linear_cls = partial(nn.Conv1d, kernel_size=1) if transposed else nn.Linear
linear_cls = TransposedLinear if transposed else nn.Linear
if activation == 'glu':
d_output *= 2
linear = linear_cls(d_input, d_output, bias=bias, **kwargs)
# Initialize weight
if initializer is not None:
get_initializer(initializer, activation)(linear.weight)
# Initialize bias
if bias and zero_bias_init:
nn.init.zeros_(linear.bias)
# Weight norm
if weight_norm:
linear = nn.utils.weight_norm(linear)
if activate and activation is not None:
activation = Activation(activation, d_output,
dim=1 if transposed else -1)
linear = nn.Sequential(linear, activation)
return linear
class Normalization(nn.Module):
def __init__(
self,
d,
transposed=False, # Length dimension is -1 or -2
_name_='layer',
**kwargs
):
super().__init__()
self.transposed = transposed
self._name_ = _name_
if _name_ == 'layer':
self.channel = True # Normalize over channel dimension
if self.transposed:
self.norm = TransposedLN(d, **kwargs)
else:
self.norm = nn.LayerNorm(d, **kwargs)
elif _name_ == 'instance':
self.channel = False
norm_args = {'affine': False, 'track_running_stats': False}
norm_args.update(kwargs)
self.norm = nn.InstanceNorm1d(d, **norm_args) # (True, True) performs very poorly
elif _name_ == 'batch':
self.channel = False
norm_args = {'affine': True, 'track_running_stats': True}
norm_args.update(kwargs)
self.norm = nn.BatchNorm1d(d, **norm_args)
elif _name_ == 'group':
self.channel = False
self.norm = nn.GroupNorm(1, d, *kwargs)
elif _name_ == 'none':
self.channel = True
self.norm = nn.Identity()
else: raise NotImplementedError
def forward(self, x):
# Handle higher dimension logic
shape = x.shape
if self.transposed:
x = rearrange(x, 'b d ... -> b d (...)')
else:
x = rearrange(x, 'b ... d -> b (...)d ')
# The cases of LayerNorm / no normalization are automatically handled in all cases
# Instance/Batch Norm work automatically with transposed axes
if self.channel or self.transposed:
x = self.norm(x)
else:
x = x.transpose(-1, -2)
x = self.norm(x)
x = x.transpose(-1, -2)
x = x.view(shape)
return x
def step(self, x, **kwargs):
assert self._name_ in ["layer", "none"]
if self.transposed: x = x.unsqueeze(-1)
x = self.forward(x)
if self.transposed: x = x.squeeze(-1)
return x
class GConv(nn.Module):
requires_length = True
def __init__(
self,
d_model,
d_state=64,
l_max=1, # Maximum length of sequence. Fine if not provided: the kernel will keep doubling in length until longer than sequence. However, this can be marginally slower if the true length is not a power of 2
channels=1, # maps 1-dim to C-dim
bidirectional=False,
# Arguments for FF
activation='gelu', # activation in between SS and FF
ln=False, # Extra normalization
postact=None, # activation after FF
initializer=None, # initializer on FF
weight_norm=False, # weight normalization on FF
hyper_act=None, # Use a "hypernetwork" multiplication
dropout=0.0,
transposed=True, # axis ordering (B, L, D) or (B, D, L)
verbose=False,
shift=False,
linear=False,
mode="cat_randn",
# SSM Kernel arguments
**kernel_args,
):
"""
d_state: the dimension of the state, also denoted by N
l_max: the maximum sequence length, also denoted by L
if this is not known at model creation, set l_max=1
channels: can be interpreted as a number of "heads"
bidirectional: bidirectional
dropout: standard dropout argument
transposed: choose backbone axis ordering of (B, L, H) or (B, H, L) [B=batch size, L=sequence length, H=hidden dimension]
Other options are all experimental and should not need to be configured
"""
super().__init__()
self.h = d_model
self.n = d_state
self.bidirectional = bidirectional
self.ln = ln
self.channels = channels
self.transposed = transposed
self.shift = shift
self.linear = linear
self.mode = mode
self.l_max = l_max
# optional multiplicative modulation GLU-style
# https://arxiv.org/abs/2002.05202
self.hyper = hyper_act is not None
if self.hyper:
channels *= 2
self.hyper_activation = Activation(hyper_act)
self.D = nn.Parameter(torch.randn(channels, self.h))
if self.bidirectional:
channels *= 2
# Pointwise
if not self.linear:
self.activation = Activation(activation)
dropout_fn = nn.Dropout2d if self.transposed else nn.Dropout
self.dropout = dropout_fn(
dropout) if dropout > 0.0 else nn.Identity()
if self.ln:
self.norm = Normalization(
self.h*self.channels, transposed=transposed)
else:
self.norm = nn.Identity()
# position-wise output transform to mix features
if not self.linear:
self.output_linear = LinearActivation(
self.h*self.channels,
self.h,
transposed=self.transposed,
initializer=initializer,
activation=postact,
activate=True,
weight_norm=weight_norm,
)
self.init_scale = kernel_args.get('init_scale', 0)
self.kernel_dim = kernel_args.get('kernel_dim', 64)
self.num_scales = kernel_args.get(
'n_scales', 1+math.ceil(math.log2(l_max/self.kernel_dim))-self.init_scale)
if self.num_scales is None:
self.num_scales = 1 + \
math.ceil(math.log2(l_max/self.kernel_dim)) - self.init_scale
self.kernel_list = nn.ParameterList()
decay_min = kernel_args.get('decay_min', 2)
decay_max = kernel_args.get('decay_max', 2)
for _ in range(self.num_scales):
if 'randn' in mode:
kernel = nn.Parameter(torch.randn(
channels, self.h, self.kernel_dim))
elif 'cos' in mode:
kernel = nn.Parameter(torch.cat([torch.cos(torch.linspace(0, 2*i*math.pi, self.kernel_dim)).expand(
channels, 1, self.kernel_dim) for i in range(self.h)], dim=1)[:, torch.randperm(self.h), :])
else:
raise ValueError(f"Unknown mode {mode}")
kernel._optim = {
'lr': kernel_args.get('lr', 0.001),
}
self.kernel_list.append(kernel)
if 'learnable' in mode:
self.decay = nn.Parameter(torch.rand(
self.h) * (decay_max - decay_min) + decay_min)
if 'fixed' in mode:
self.decay.requires_grad = False
else:
self.decay._optim = {
'lr': kernel_args.get('lr', 0.001),
}
self.register_buffer('multiplier', torch.tensor(1.0))
else:
self.register_buffer('multiplier', torch.linspace(
decay_min, decay_max, self.h).view(1, -1, 1))
self.register_buffer('kernel_norm', torch.ones(channels, self.h, 1))
self.register_buffer('kernel_norm_initialized',
torch.tensor(0, dtype=torch.bool))
# absorbs return_output and transformer src mask
def forward(self, u, return_kernel=False):
"""
u: (B H L) if self.transposed else (B L H)
state: (H N) never needed unless you know what you're doing
Returns: same shape as u
"""
if not self.transposed:
u = u.transpose(-1, -2)
L = u.size(-1)
kernel_list = []
interpolate_mode = 'nearest' if 'nearest' in self.mode else 'linear'
multiplier = self.multiplier
if 'sum' in self.mode:
for i in range(self.num_scales):
kernel = F.pad(
F.interpolate(
self.kernel_list[i],
scale_factor=2**(i+self.init_scale),
mode=interpolate_mode,
),
(0, self.kernel_dim*2**(self.num_scales-1+self.init_scale) -
self.kernel_dim*2**(i+self.init_scale)),
) * multiplier ** (self.num_scales - i - 1)
kernel_list.append(kernel)
k = sum(kernel_list)
elif 'cat' in self.mode:
for i in range(self.num_scales):
kernel = F.interpolate(
self.kernel_list[i],
scale_factor=2**(max(0, i-1)+self.init_scale),
mode=interpolate_mode,
) * multiplier ** (self.num_scales - i - 1)
kernel_list.append(kernel)
k = torch.cat(kernel_list, dim=-1)
else:
raise ValueError(f"Unknown mode {self.mode}")
if 'learnable' in self.mode:
k = k * torch.exp(-self.decay.view(1, -1, 1)*torch.log(
torch.arange(k.size(-1), device=k.device)+1).view(1, 1, -1))
if not self.kernel_norm_initialized:
self.kernel_norm = k.norm(dim=-1, keepdim=True).detach()
self.kernel_norm_initialized = torch.tensor(
1, dtype=torch.bool, device=k.device)
print(f"Kernel norm: {self.kernel_norm.mean()}")
print(f"Kernel size: {k.size()}")
if k.size(-1) > L:
k = k[..., :L]
elif k.size(-1) < L:
k = F.pad(k, (0, L - k.size(-1)))
k = k / self.kernel_norm # * (L / self.l_max) ** 0.5
# Convolution
if self.bidirectional:
k0, k1 = rearrange(k, '(s c) h l -> s c h l', s=2)
k = F.pad(k0, (0, L)) \
+ F.pad(k1.flip(-1), (L, 0)) \
k_f = torch.fft.rfft(k, n=2*L) # (C H L)
u_f = torch.fft.rfft(u, n=2*L) # (B H L)
# k_f.unsqueeze(-4) * u_f.unsqueeze(-3) # (B C H L)
y_f = contract('bhl,chl->bchl', u_f, k_f)
y = torch.fft.irfft(y_f, n=2*L)[..., :L] # (B C H L)
# Compute D term in state space equation - essentially a skip connection
y = y + contract('bhl,ch->bchl', u, self.D)
# Reshape to flatten channels
y = rearrange(y, '... c h l -> ... (c h) l')
if not self.linear:
y = self.dropout(self.activation(y))
if not self.transposed:
y = y.transpose(-1, -2)
if not self.linear:
y = self.norm(y)
y = self.output_linear(y)
if return_kernel:
return y, k
return y, None
@property
def d_state(self):
return self.h * self.n
@property
def d_output(self):
return self.h
@property
def state_to_tensor(self):
return lambda state: rearrange('... h n -> ... (h n)', state)