-
Notifications
You must be signed in to change notification settings - Fork 0
/
HypVAE.py
233 lines (182 loc) · 6.95 KB
/
HypVAE.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
import argparse
import torch
import torch.utils.data
from torch import nn, optim
from torch.autograd import Variable
from torch.nn import functional as F
from torchvision import datasets, transforms
from torchvision.utils import save_image
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import numpy as np
import os
dir_path = os.path.dirname(os.path.realpath(__file__))
os.chdir(dir_path)
parser = argparse.ArgumentParser(description='VAE MNIST Example')
parser.add_argument('--batch-size', type=int, default=16, metavar='N',
help='input batch size for training (default: 128)')
parser.add_argument('--epochs', type=int, default=10, metavar='N',
help='number of epochs to train (default: 10)')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='enables CUDA training')
parser.add_argument('--seed', type=int, default=1, metavar='S',
help='random seed (default: 1)')
parser.add_argument('--log-interval', type=int, default=10, metavar='N',
help='how many batches to wait before logging training status')
args = parser.parse_args()
args.cuda = (not args.no_cuda) and torch.cuda.is_available()
torch.manual_seed(args.seed)
if args.cuda:
torch.cuda.manual_seed(args.seed)
EPS = 1e-5
kwargs = {'num_workers': 1, 'pin_memory': True} if args.cuda else {}
train_loader = torch.utils.data.DataLoader(
datasets.MNIST('../data', train=True, download=True,
transform=transforms.ToTensor()),
batch_size=args.batch_size, shuffle=True, **kwargs)
test_loader = torch.utils.data.DataLoader(
datasets.MNIST('../data', train=False, transform=transforms.ToTensor()),
batch_size=args.batch_size, shuffle=False, **kwargs)
class encoder(nn.Module):
def __init__(self):
super(encoder, self).__init__()
self.fc1 = nn.Linear(784, 400)
self.fc21 = nn.Linear(400, 5)
self.fc22 = nn.Linear(400, 5)
self.relu = nn.ReLU()
self.sigmoid = nn.Sigmoid()
def encode(self, x):
h1 = self.relu(self.fc1(x))
return self.fc21(h1), self.fc22(h1)
def reparameterize(self, mu, logvar):
std = logvar.mul(0.5).exp_()
eps = Variable(std.data.new(std.size()).normal_())
return eps.mul(std).add_(mu), mu, logvar
def forward(self, x):
mu, logvar = self.encode(x.view(-1, 784))
return self.reparameterize(mu, logvar)
class decoder(nn.Module):
def __init__(self):
super(decoder, self).__init__()
self.fc3 = nn.Linear(5, 400)
self.fc4 = nn.Linear(400, 784)
self.relu = nn.ReLU()
self.sigmoid = nn.Sigmoid()
def decode(self, z):
h3 = self.relu(self.fc3(z))
return self.sigmoid(self.fc4(h3))
def forward(self, z):
return self.decode(z)
enc_ = encoder()
dec_ = decoder()
if args.cuda:
enc_.cuda()
dec_.cuda()
def loss_function(recon_x, x, mu, logvar):
BCE = F.binary_cross_entropy(recon_x, x.view(-1, 784))
# see Appendix B from VAE paper:
# Kingma and Welling. Auto-Encoding Variational Bayes. ICLR, 2014
# https://arxiv.org/abs/1312.6114
# 0.5 * sum(1 + log(sigma^2) - mu^2 - sigma^2)
KLD = -0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp())
# Normalise by same number of elements as in reconstruction
KLD /= args.batch_size * 784
return BCE + KLD
def proj(params):
paramsy = params.clone()
t_val = (params.norm(p=2, dim=1) ** 2 + 1).sqrt()
for i in range(args.batch_size):
paramsy[i] = params[i] / (1 + t_val[i])
return paramsy
def arcosh(x):
return torch.log(x + torch.sqrt(x ** 2 - 1))
def distance(u, v):
uu = u.norm() ** 2
vv = v.norm() ** 2
u0 = (uu + 1)
v0 = (vv + 1)
d = arcosh(u0.sqrt() * v0.sqrt() - torch.dot(u, v))
return d.clamp(min=EPS)
def punisher(z, label):
same_family = 0
diff_family = 0
for i, latent_1 in enumerate(z):
for j, latent_2 in enumerate(z):
if i >= j:
continue
elif label[i] == label[j]:
same_family += torch.exp(-distance(latent_1, latent_2))
else:
diff_family += torch.exp(-distance(latent_1, latent_2))
return -torch.log(same_family) + torch.log(diff_family)
optimizer_enc = optim.Adam(enc_.parameters(), lr=1e-3)
optimizer_dec = optim.Adam(dec_.parameters(), lr=1e-3)
def train(epoch):
enc_.train()
dec_.train()
train_loss = 0
logvar_sum = 0
skipit = 0
for batch_idx, (data, label) in enumerate(train_loader):
go_skip=False
data = Variable(data)
if args.cuda:
data = data.cuda()
optimizer_enc.zero_grad()
optimizer_dec.zero_grad()
z, mu, logvar = enc_(data)
recon_batch = dec_(z)
loss = loss_function(recon_batch, data, mu, logvar)+0.1 * punisher(z, label)
loss.backward()
for i, ass in enumerate(enc_.parameters()):
if ass.grad is None:
continue
elif np.isnan(((ass.grad).data).numpy()).any():
go_skip=True
if (not go_skip):
train_loss += loss.data[0]
logvar_sum += logvar.data[0]
optimizer_enc.step()
optimizer_dec.step()
else:
optimizer_enc.zero_grad()
optimizer_dec.zero_grad()
skipit+=1
if batch_idx % args.log_interval == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader),
loss.data[0] / len(data)))
print 'Skip number : '+str(skipit)
skipit=0
print '====> Epoch: ' + str(epoch) + ' Average loss: ' + str(
train_loss / len(train_loader.dataset))
print '====> Epoch: ' + str(epoch) + ' Average logvar: ' + str(
logvar_sum / len(train_loader.dataset))
print('====> Epoch: {} Average loss: {:.4f}'.format(
epoch, train_loss / len(train_loader.dataset)))
def test(epoch):
enc_.eval()
dec_.eval()
test_loss = 0
for i, (data, label) in enumerate(test_loader):
if args.cuda:
data = data.cuda()
data = Variable(data, volatile=True)
z, mu, logvar = enc_(data)
recon_batch = dec_(z)
test_loss += loss_function(recon_batch, data, mu, logvar).data[0]
test_loss += 0.1 * punisher(z, label).data[0]
if i == 0:
n = min(data.size(0), 8)
comparison = torch.cat([data[:n],
recon_batch.view(args.batch_size, 1, 28, 28)[:n]])
save_image(comparison.data.cpu(),
'results_hyp/reconstruction_d5_' + str(epoch) + '.png', nrow=n)
test_loss /= len(test_loader.dataset)
print '<-------------TEST LOSS------------->'
print test_loss
for epoch in range(1, args.epochs + 1):
train(epoch)
test(epoch)