-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMeteoLib.cs
587 lines (496 loc) · 21.3 KB
/
MeteoLib.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
using System;
using System.CodeDom;
namespace ImportWLK
{
internal static class MeteoLib
{
/// <summary>
/// Calculates the Wind Chill in Celsius
/// </summary>
/// <remarks>
/// JAG/TI - 2003
/// </remarks>
/// <param name="tempC">Temp in C</param>
/// <param name="windSpeedKph">Average wind speed in km/h</param>
/// <param name="tempCutoff">Use the 10C cut-off</param>
/// <returns>Wind Chill in Celsius</returns>
public static double WindChill(double tempC, double windSpeedKph, bool tempCutoff = true)
{
// see American Meteorological Society Journal
// see http://www.msc.ec.gc.ca/education/windchill/science_equations_e.cfm
// see http://www.weather.gov/os/windchill/index.shtml
if ((tempC >= 10.0 && tempCutoff) || (windSpeedKph <= 4.8))
return tempC;
double windPow = Math.Pow(windSpeedKph, 0.16);
double wc = 13.12 + (0.6215 * tempC) - (11.37 * windPow) + (0.3965 * tempC * windPow);
if (wc > tempC) return tempC;
return wc;
}
/// <summary>
/// Calculates Apparent Temperature in Celsius
/// </summary>
/// <remarks>
/// See http://www.bom.gov.au/info/thermal_stress/#atapproximation
/// </remarks>
/// <param name="tempC">Temp in C</param>
/// <param name="windspeedMS">Wind speed in m/s</param>
/// <param name="humidity">Relative humidity</param>
/// <returns>Apparent temperature in Celsius</returns>
public static double ApparentTemperature(double tempC, double windspeedMS, int humidity)
{
double avp = (humidity / 100.0) * 6.105 * Math.Exp(17.27 * tempC / (237.7 + tempC)); // hPa
//double avp = ActualVapourPressure(tempC, humidity)
return tempC + (0.33 * avp) - (0.7 * windspeedMS) - 4.0;
}
/// <summary>
/// Calculates the Feels Like temperature in Celsius
/// </summary>
/// <remarks>
/// Joint Action Group for Temperature Indices (JAG/TI) formula
/// </remarks>
/// <param name="tempC">Temp in C</param>
/// <param name="windSpeedKph">Wind speed in kph</param>
/// <param name="humidity">Relative humidity</param>
/// <returns>Feels Like temperature in Celsius</returns>
public static double FeelsLike(double tempC, double windSpeedKph, int humidity)
{
double chill = WindChill(tempC, windSpeedKph, false);
double svp = SaturationVapourPressure1980(tempC); // Saturation Vapour Pressure in hPa
double avp = (float) humidity / 100.0 * svp / 10.0; // Actual Vapour Pressure in kPa
if (windSpeedKph > 72) windSpeedKph = 72; // Windspeed limited to 20 m/s = 72 km/h
double apptemp = (1.04 * tempC) + (2 * avp) - (windSpeedKph * 0.1805553) - 2.7;
double feels;
if (tempC < 10.0)
{
feels = chill;
}
else if (tempC > 20.0)
{
feels = apptemp;
}
else
{
// 10-20 C = linear interpolation between chill and apparent
double A = (tempC - 10) / 10;
double B = 1 - A;
feels = (apptemp * A) + (chill * B);
}
return feels;
}
/// <summary>
/// Calculates the North American Heat Index
/// </summary>
/// <remarks>
/// Uses the NOAA formula and corrections
/// see: https://www.wpc.ncep.noaa.gov/html/heatindex_equation.shtml
/// </remarks>
/// <param name="tempC">Temp in C</param>
/// <param name="humidity">Relative humidity</param>
/// <returns>Heat Index in Celsius</returns>
public static double HeatIndex(double tempC, int humidity)
{
double tempF = CToF(tempC);
if (tempF < 80)
{
return tempC;
}
else
{
double tempSqrd = tempF * tempF;
double humSqrd = humidity * humidity;
var result = FtoC(0 - 42.379 + (2.04901523 * tempF) + (10.14333127 * humidity) - (0.22475541 * tempF * humidity) - (0.00683783 * tempSqrd) - (0.05481717 * humSqrd) +
(0.00122874 * tempSqrd * humidity) + (0.00085282 * tempF * humSqrd) - (0.00000199 * tempSqrd * humSqrd));
// Rothfusz adjustments
if ((humidity < 13) && (tempF >= 80) && (tempF <= 112))
{
result -= ((13 - humidity) / 4.0) * Math.Sqrt((17 - Math.Abs(tempF - 95)) / 17.0);
}
else if ((humidity > 85) && (tempF >= 80) && (tempF <= 87))
{
result += ((humidity - 85) / 10.0) * ((87 - tempF) / 5.0);
}
return result;
}
}
/// <summary>
/// Estimates the Wet Bulb temperature using a polynomial
/// </summary>
/// <remarks>
/// To calculate this accurately we need an iterative process
/// </remarks>
/// <param name="tempC">Temp in C</param>
/// <param name="dewPointC">Dew point in C</param>
/// <param name="pressureMb">Station pressure in mb/hPa</param>
/// <returns>Wet bulb temperature in Celsius</returns>
public static double CalculateWetBulbC(double tempC, double dewPointC, double pressureMb)
{
double svpDP = SaturationVapourPressure1980(dewPointC);
return (((0.00066 * pressureMb) * tempC) + ((4098 * svpDP) / (Sqr(dewPointC + 237.7)) * dewPointC)) / ((0.00066 * pressureMb) + (4098 * svpDP) / (Sqr(dewPointC + 237.7)));
}
/// <summary>
/// Estimates the Wet Bulb temperature using a polynomial
/// </summary>
/// <remarks>
/// To calculate this accurately we need an iterative process
/// This method assumes a pressure of 1013.25 hPa, and RH in the range 5% - 99%
/// It is an empirical approximation generated using a best fit function
/// See: https://journals.ametsoc.org/jamc/article/50/11/2267/13533/Wet-Bulb-Temperature-from-Relative-Humidity-and
/// and Strull: https://www.eoas.ubc.ca/books/Practical_Meteorology/prmet102/Ch04-watervapor-v102b.pdf
/// Errors have multiple relative maxima and minima of order from −1.0° to +0.6°C
/// </remarks>
/// <param name="tempC">Temp in C</param>
/// <param name="humidity">Relative Humidity in %</param>
/// <param name="PressureMB">Station pressure in mb/hPa</param>
/// <returns>Wet bulb temperature in Celsius</returns>
public static double CalculateWetBulbC2(double tempC, int humidity)
{
if (humidity == 100)
return tempC;
return tempC * Math.Atan(0.151977 * Math.Sqrt(humidity + 8.313659)) + Math.Atan(tempC + humidity) - Math.Atan(humidity - 1.676331) + 0.00391838 * Math.Pow(humidity, 3.0 / 2) * Math.Atan(0.023101 * humidity) - 4.686035;
}
/// <summary>
/// Calculates the Wet Bulb temperature iteratively
/// </summary>
/// <remarks>
/// To calculate this accurately we need an iterative process
/// See: https://www.researchgate.net/publication/303156836_Simple_Iterative_Approach_to_Calculate_Wet-Bulb_Temperature_for_Estimating_Evaporative_Cooling_Efficiency
/// </remarks>
/// <param name="tempC">Temp in C</param>
/// <param name="humidity">Relative Humidity in %</param>
/// <param name="pressureHpa">Station pressure in mb/hPa</param>
/// <returns>Wet bulb temperature in Celsius</returns>
public static double CalculateWetBulbCIterative(double tempC, int humidity, double pressureHpa)
{
if (humidity == 100)
return tempC;
var e = ActualVapourPressure2008(tempC, humidity);
double Tw;
double Tw1 = tempC;
do
{
Tw = Tw1;
var Ewg = SaturationVapourPressure1980(Tw);
var eg = Ewg - pressureHpa * (tempC - Tw) * 0.00066 * (1 + (0.00115 * Tw));
var Ed = e - eg;
Tw1 = Tw + Ed / 5 * 2;
} while (Math.Abs(Tw - Tw1) > 0.1);
return Tw1;
}
private static double Sqr(double num)
{
return num * num;
}
/// <summary>
/// Calculates the Dew Point in Celsius
/// </summary>
/// <remarks>
/// Uses the Davis formula, described as "an approximation of the Goff & Gratch equation"
/// It is functionally equivalent to the Magnus formula using the Sonntag 1990 values for constants
/// </remarks>
/// <param name="tempC">Temp in C</param>
/// <param name="humidity">Relative humidity</param>
/// <returns>Dew Point temperature in Celsius</returns>
public static double DewPoint(double tempC, double humidity)
{
if (humidity == 0 || humidity == 100)
return tempC;
// Davis algorithm
double lnVapor = Math.Log(ActualVapourPressure2008(tempC, (int) humidity));
return ((243.12 * lnVapor) - 440.1) / (19.43 - lnVapor);
}
/// <summary>
/// Calculates the Saturated Vapour Pressure in hPa
/// </summary>
/// <remarks>
/// Bolton(1980) or
/// August–Roche–Magnus?
/// </remarks>
/// <param name="tempC">Temp in C</param>
/// <returns>SVP in hPa</returns>
public static double SaturationVapourPressure1980(double tempC)
{
return 6.112 * Math.Exp(17.67 * tempC / (tempC + 243.5));
}
/// <summary>
/// Calculates the Saturated Vapour Pressure in hPa
/// </summary>
/// <remarks>
/// WMO - CIMO Guide - 2008
/// Sonntag 1990
/// </remarks>
/// <param name="tempC">Temp in C</param>
/// <returns>SVP in hPa</returns>
public static double SaturationVapourPressure2008(double tempC)
{
return 6.112 * Math.Exp((17.62 * tempC) / (243.12 + tempC));
}
private static double ActualVapourPressure2008(double tempC, int humidity)
{
return humidity / 100.0 * SaturationVapourPressure2008(tempC);
}
/// <summary>
/// Calculates the Canadian Humidex
/// </summary>
/// <remarks>
/// WMO - CIMO Guide - 2008
/// Sonntag 1990
/// </remarks>
/// <param name="tempC">Temp in C</param>
/// <param name="humidity">Relative humidity</param>
/// <returns>Humidex - dimensionless</returns>
public static double Humidex(double tempC, int humidity)
{
if (tempC < 10)
return tempC;
else
return tempC + ((5.0 / 9.0) * (ActualVapourPressure2008(tempC, humidity) - 10.0));
}
public static double CToF(double tempC)
{
return ((tempC * 9.0) / 5.0) + 32;
}
public static double FtoC(double tempF)
{
return ((tempF - 32) * 5.0) / 9.0;
}
/// <summary>
/// Calculates the Growing Degree Days.
/// Uses method A - https://en.wikipedia.org/wiki/Growing_degree-day
/// </summary>
/// <param name="maxC">The days maximum temperature (Celsius)</param>
/// <param name="minC">The days minimum temperature (Celsius)</param>
/// <param name="baseC">The GDD base temperature (Celsius)</param>
/// <returns>GrowingDegreeDay (Celsius)</returns>
public static double GrowingDegreeDays(double maxC, double minC, double baseC, bool cap30C)
{
var hiC = cap30C && maxC > 30 ? 30 : maxC;
var loC = cap30C && minC > 30 ? 30 : minC;
var avgC = (hiC + loC) / 2;
var gdd = 0.0;
if (avgC > baseC)
{
gdd = avgC - baseC;
}
return gdd;
}
/// <summary>
/// Calculates the Davis THW Index.
/// Uses method described for Heat Index and THSW Index in AN28
/// </summary>
/// <param name="tempC">The current temperature (Celsius)</param>
/// <param name="int">The current RH</param>
/// <param name="windKph">The current average wind speed (KPH)</param>
/// <returns>THWIndex (Celsius)</returns>
public static double THWIndex(double tempC, int hum, double windKph)
{
var hindex = HeatIndex(tempC, hum);
// above 144F/62.22C wind factor is zero
var wind = tempC > 62.22 ? 0 : tempC - WindChill(tempC, windKph, false);
return hindex - wind;
}
/// <summary>
/// Calculates the sea leavel pressure
/// </summary>
/// <param name="altitudeM">Altitude in metres</param>
/// <param name="pressureHpa">Station pressure in hPha</param>
/// <param name="tempC">Current temperature</param>
/// <returns>Returns the sea level pressure in hPa</returns>
public static double GetSeaLevelPressure(double altitudeM, double pressureHpa, double tempC)
{
/* constants */
double i = 287.05;// gas constant for dry air
double a = 9.80665;// gravity
double r = .0065; //standard atmosphere lapse rate
double s = 1013.25;// standard sea level pressure
double n = 273.15 + tempC; //288.15 standard sea level temp;
double l = a / (i * r);
double c = i * r / a;
double u = Math.Pow(1 + Math.Pow(s / pressureHpa, c) * (r * altitudeM / n), l);
double d = pressureHpa * u;
return d;
}
/// <summary>
/// Calculates the sea leavel pressure
/// https://www.wind101.net/sea-level-pressure-advanced/LAPLACE%20GENERAL%20EQUATION%20THE%20REDUCTION%20OF%20BAROMETRIC%20PRESSURE%20DrKFS_net.pdf
/// </summary>
/// <param name="altitudeM">Station altitude in metres</param>
/// <param name="pressureHpa">Station pressure in inHg</param>
/// <param name="tempC">Current temperature</param>
/// <param name="latitude">Latitude of the station</param>
/// <returns>Returns the sea level pressure in hPa</returns>
public static double GetSeaLevelPressure(double altitudeM, double pressureHpa, double tempC, decimal latitude)
{
/* constants */
double latRad = (double) latitude * Math.PI / 180; // Latitude in radians
double R = 6367324; // Radius of Earth (m)
double k = 0.0026; // asphericity of earth
double K = 18400.0; // barometrics constant (m)
double s = 1013.25; // standard sea level pressure (hPa)
double r = .005; // atmosphere lapse rate assuming a temperature gradient of 0.5 degC/100 metres (C/m)
double a = 0.0037; // coefficient of thermal expansion of the air
double avgTemp = tempC + (r * altitudeM) / 2; // avg temp of air column
double vp = Math.Pow(10, 7.5 * avgTemp / (237.3 + avgTemp)) * 6.1078; // vapour pressure
double corT = 1 + a * avgTemp; // correction for atmospheric temperature
double corH = 1 / (1 - 0.378 * (vp / s)); // correction for humidity
double corE = 1 / (1 - (k * Math.Cos(2 * latRad))); // correction for asphericity of earth
double corG = 1 + altitudeM / R; // correction for variation of gravity with height
double corr = altitudeM / (K * corT * corH * corE * corG);
return pressureHpa * Math.Pow(10, corr);
}
/// <summary>
/// Calculates the sea leavel pressure using the Davis method
/// http://www.fao.org/3/x0490e/x0490e07.htm#radiation - equation (39)
/// </summary>
/// <param name="altitudeFt">Altitude in feet</param>
/// <param name="pressInHg">Station pressure in inHg</param>
/// <param name="tempAvgT">Average of temperature now and temperature 12 hours ago</param>
/// <param name="dewPoint">Current dewpoint</param>
/// <returns>Returns the sea level pressure in inHG</returns>
public static double GetSeaLevelPressureDavis(double altitudeFt, double pressInHg, double tempAvgT, double dewPoint)
{
throw new NotImplementedException();
}
/// <summary>
/// Calculates the altimeter pressure
/// </summary>
/// <param name="pressureHpa">Station pressure in inHg</param>
/// <param name="altitudeM">Station altitude in metres</param>
/// <returns>Returns the altimeter pressure in hPa</returns>
public static double StationToAltimeter(double pressureHPa, double elevationM)
{
// from MADIS API by NOAA Forecast Systems Lab, see http://madis.noaa.gov/madis_api.html
double k1 = 0.190284; // discrepancy with calculated k1 probably because Smithsonian used less precise gas constant and gravity values
double k2 = 8.4184960528E-5; // (standardLapseRate / standardTempK) * (Power(standardSLP, k1)
return Math.Pow(Math.Pow(pressureHPa - 0.3, k1) + (k2 * elevationM), 1 / k1);
}
/// <summary>
/// Calculates the net long wave radiation
/// http://www.fao.org/3/x0490e/x0490e07.htm#radiation - equation (39)
/// </summary>
/// <param name="tempMinC">Minimum temperature over the period</param>
/// <param name="tempMaxC">Maximum temperature over the period</param>
/// <param name="vapPresskPa">Vapour pressure in kPa</param>
/// <param name="radMeasured">Measured solar radiation (same units as radClearSky)</param>
/// <param name="radClearSky">Calculated clear sky radiation (same units as radMeasured)</param>
/// <returns>Returns the long wave (back) radiation in MJ/m^2/hour</returns>
private static double LongwaveRadiation(double tempAvgC, double vapPresskPa, double radMeasured, double radClearSky)
{
var avgK = tempAvgC + 273.16;
// Stefan-Boltzman constant in MJ/K^4/m^2/day
var sigma = 4.903e-09;
// because we are using 1 hour, it needs scaling...
sigma /= 24.0;
// Use the ratio of measured to expected radiation as a measure of cloudiness, but only if it's daylight
double cloudFactor;
if (radClearSky > 0)
{
cloudFactor = radMeasured / radClearSky;
if (cloudFactor > 1)
cloudFactor = 1;
}
else
{
// It's night!
// As the night time ET is low compared to day, let's just assume 50% cloud cover
cloudFactor = 0.5;
}
// Calculate the long wave (back) radiation in MJ/m^2/hour.
var part1 = sigma * Math.Pow(avgK, 4);
var part2 = (0.34 - 0.14 * Math.Sqrt(vapPresskPa));
var part3 = (1.35 * cloudFactor - 0.35);
return part1 * part2 * part3;
}
/// <summary>
/// Evapotranspiration
/// The calculation of ETo by means of the FAO Penman-Monteith equation
/// Using grass as the reference crop
/// Uses the "hourly time step" equations - http://www.fao.org/3/x0490e/x0490e08.htm#calculation%20procedure
/// With acknowledgement to the equivalent WeeWX formula - https://github.com/weewx/weewx/blob/master/bin/weewx/wxformulas.py
/// </summary>
/// <param name="tempMinC"></param>
/// <param name="tempMaxC"></param>
/// <param name="humMin"></param>
/// <param name="humMax"></param>
/// <param name="radMean">Mean solar irradiation over the period in W/m^2</param>
/// <param name="windAvgMs">Mean wind speed over the period in m/s</param>
/// <param name="latitude"></param>
/// <param name="longitude"></param>
/// <param name="altitudeM">Station altitude in metres</param>
/// <param name="pressMinKpa"></param>
/// <param name="pressMaxkpa"></param>
/// <param name="date">Date/time of the end of the period</param>
/// <returns>Evapotranspiration in mm</returns>
public static double Evapotranspiration(
double tempAvgC, int humAvg,
double radMean, double maxRadMean, double windAvgMs,
double pressKpa)
{
var windHeightM = 2.0; // height of wind sensor in metres, we assume 2m for a typical amateur station
// Use grass as the reference crop
var albedo = 0.23;
// Adjust avg wind speed to a height of 2m (equation 47)
var u2 = 4.87 * windAvgMs / Math.Log(67.8 * windHeightM - 5.42);
// Calculate the psychrometric constant in kPa/C (equation 8)
var gamma = 0.665e-03 * pressKpa;
// Calculate mean saturation vapour pressure, converting from hPa to kPa (equation 12)
var e0T = 0.6108 * Math.Exp(17.27 * tempAvgC / (tempAvgC + 237.3));
// Calculate the slope of the saturation vapour pressure curve in kPa/C (equation 13)
var delta = 4098.0 * (0.6108 * Math.Exp(17.27 * tempAvgC / (tempAvgC + 237.3))) / ((tempAvgC + 237.3) * (tempAvgC + 237.3));
// Calculate actual vapour pressure from relative humidity (equation 17)
var ea = e0T * humAvg / 100;
// Convert solar radiation from W/m^2 to MJ/m^2/h
var Rs = radMean * 0.0036;
// Net short-wave (measured) radiation in MJ/m^2/h (equation 38)
var Rns = (1 - albedo) * Rs;
// Take the mean solar max and convert from W/m^2 to MJ/m^2/h
var Rso = maxRadMean * 0.0036;
// Long-wave (back) radiation. (equation 39 modified to per hour)
var Rnl = LongwaveRadiation(tempAvgC, ea, Rs, Rso);
// Calculate net radiation at the surface in MJ/m^2/h (equation 40)
var Rn = Rns - Rnl;
// Calculate the soil heat flux. (see section "For hourly or shorter periods" in http://www.fao.org/docrep/x0490e/x0490e07.htm#radiation
var Ghr = (Rs > 0 ? 0.1 : 0.5) * Rn;
// Result is in mm/h (equation 53)
// But as we have fixed a 1 hour period, then the effective result is just mm
var et0 = (0.408 * delta * (Rn - Ghr) + gamma * 37 / (tempAvgC + 273) * u2 * (e0T - ea)) / (delta + gamma * (1 + 0.34 * u2));
if (et0 < 0) et0 = 0;
return et0;
}
/// <summary>
/// Calculates the Davis version (almost) of Evapotranspiration
/// </summary>
/// <returns>ET for past hour in mm</returns>
/*
public static double CalulateEvapotranspiration(DateTime ts)
{
var onehourago = ts.AddHours(-1);
// Mean temperature in Fahrenheit
var result = RecentDataDb.Query<AvgData>("select avg(OutsideTemp) temp, avg(WindSpeed) wind, avg(SolarRad) solar, avg(Humidity) hum from RecentData where Timestamp >= ?", onehourago);
var meanTempC = ConvertUnits.UserTempToC(result[0].temp);
var meanTempK = meanTempC + 273.16;
var meanWind = ConvertUnits.UserWindToMS(result[0].wind);
var meanHum = result[0].hum;
var meanSolar = result[0].solar;
var pressure = ConvertUnits.UserPressToMB(AltimeterPressure) / 100; // need kPa
var satVapPress = SaturationVapourPressure2008(meanTempC);
var waterVapour = satVapPress * meanHum / 100;
var delta = satVapPress / meanTempK * ((6790.4985 / meanTempK) - 5.02808);
var gamma = 0.000646 * (1 + 0.000946 * meanTempC) * pressure;
var weighting = delta / (delta + gamma);
double windFunc;
if (meanSolar > 0)
windFunc = 0.030 + 0.0576 * meanWind;
else
windFunc = 0.125 + 0.0439 * meanWind;
var lambda = 69.5 * (1 - 0.000946 * meanTempC);
//TODO: Need to calculate the net radiation rather than use meanSolar - need mean theoretical solar value for this
var meanSolarMax = 0.0; //TODO
// clear sky - meanSolar/meanSolarMax >= 1, c <= 1, solar elevation > 10 deg
var clearSky = (1.333 - 1.333 * meanSolar / meanSolarMax);
var netSolar = 0.0; //TODO
var ET = weighting * netSolar / lambda + (1 - weighting) * (satVapPress - waterVapour) * windFunc;
return ET;
}
*/
}
}