-
Notifications
You must be signed in to change notification settings - Fork 3
/
train_ace.py
executable file
·145 lines (97 loc) · 6.59 KB
/
train_ace.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
#!/usr/bin/env python3
# Copyright © Niantic, Inc. 2022.
import argparse
import logging
from distutils.util import strtobool
from pathlib import Path
from ace_trainer import TrainerACE
def _strtobool(x):
return bool(strtobool(x))
if __name__ == '__main__':
# Setup logging levels.
logging.basicConfig(level=logging.INFO)
parser = argparse.ArgumentParser(
description='Fast training of a scene coordinate regression network.',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('scene', type=Path,
help='path to a scene in the dataset folder, e.g. "datasets/Cambridge_GreatCourt"')
parser.add_argument('output_map_file', type=Path,
help='target file for the trained network')
parser.add_argument('--global_feat', type=_strtobool, default=True,
help='Use global feature.')
parser.add_argument('--feat_name', type=str, default='features.npy',
help='global feature name.')
parser.add_argument('--feat_noise_std', type=float, default=0.1,
help='global feature noise std.')
parser.add_argument('--num_decoder_clusters', type=int, default=1,
help='number of decoder clusters')
parser.add_argument('--head_channels', type=int, default=768,
help='depth of the regression head, defines the map size')
parser.add_argument('--mlp_ratio', type=float, default=1.0,
help='mlp ratio for res blocks')
parser.add_argument('--encoder_path', type=Path, default=Path(__file__).parent / "ace_encoder_pretrained.pt",
help='file containing pre-trained encoder weights')
parser.add_argument('--num_head_blocks', type=int, default=1,
help='depth of the regression head, defines the map size')
parser.add_argument('--learning_rate_min', type=float, default=0.0005,
help='lowest learning rate of 1 cycle scheduler')
parser.add_argument('--learning_rate_max', type=float, default=0.005,
help='highest learning rate of 1 cycle scheduler')
parser.add_argument('--training_buffer_size', type=int, default=16000000,
help='number of patches in the training buffer')
parser.add_argument('--samples_per_image', type=int, default=1024,
help='number of patches drawn from each image when creating the buffer')
parser.add_argument('--batch_size', type=int, default=40960,
help='number of patches for each parameter update (has to be a multiple of 512)')
parser.add_argument('--max_iterations', type=int, default=30000,
help='maximum number of iterations for the training loop')
parser.add_argument('--repro_loss_hard_clamp', type=int, default=1000,
help='hard clamping threshold for the reprojection losses')
parser.add_argument('--repro_loss_soft_clamp', type=int, default=50,
help='soft clamping threshold for the reprojection losses')
parser.add_argument('--repro_loss_soft_clamp_min', type=int, default=1,
help='minimum value of the soft clamping threshold when using a schedule')
parser.add_argument('--use_half', type=_strtobool, default=True,
help='train with half precision')
parser.add_argument('--use_homogeneous', type=_strtobool, default=True,
help='train with half precision')
parser.add_argument('--use_aug', type=_strtobool, default=True,
help='Use any augmentation.')
parser.add_argument('--aug_rotation', type=int, default=15,
help='max inplane rotation angle')
parser.add_argument('--aug_scale', type=float, default=1.5,
help='max scale factor')
parser.add_argument('--image_resolution', type=int, default=480,
help='base image resolution')
parser.add_argument('--repro_loss_type', type=str, default="dyntanh",
choices=["l1", "l1+sqrt", "l1+log", "tanh", "dyntanh"],
help='Loss function on the reprojection error. Dyn varies the soft clamping threshold')
parser.add_argument('--repro_loss_schedule', type=str, default="circle", choices=['circle', 'linear'],
help='How to decrease the softclamp threshold during training, circle is slower first')
parser.add_argument('--depth_min', type=float, default=0.1,
help='enforce minimum depth of network predictions')
parser.add_argument('--depth_target', type=float, default=10,
help='default depth to regularize training')
parser.add_argument('--depth_max', type=float, default=1000,
help='enforce maximum depth of network predictions')
# Clustering params, for the ensemble training used in the Cambridge experiments. Disabled by default.
parser.add_argument('--num_clusters', type=int, default=None,
help='split the training sequence in this number of clusters. disabled by default')
parser.add_argument('--cluster_idx', type=int, default=None,
help='train on images part of this cluster. required only if --num_clusters is set.')
# Params for the visualization. If enabled, it will slow down training considerably. But you get a nice video :)
parser.add_argument('--render_visualization', type=_strtobool, default=False,
help='create a video of the mapping process')
parser.add_argument('--render_target_path', type=Path, default='renderings',
help='target folder for renderings, visualizer will create a subfolder with the map name')
parser.add_argument('--render_flipped_portrait', type=_strtobool, default=False,
help='flag for wayspots dataset where images are sideways portrait')
parser.add_argument('--render_map_error_threshold', type=int, default=10,
help='reprojection error threshold for the visualisation in px')
parser.add_argument('--render_map_depth_filter', type=int, default=10,
help='to clean up the ACE point cloud remove points too far away')
parser.add_argument('--render_camera_z_offset', type=int, default=4,
help='zoom out of the scene by moving render camera backwards, in meters')
options = parser.parse_args()
trainer = TrainerACE(options)
trainer.train()