-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrainmattexadvshd.py
345 lines (313 loc) · 16.5 KB
/
trainmattexadvshd.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
'''
Code to train SMTNet with Adversarial Loss
'''
import os
import argparse
import torch
from tqdm import tqdm
import torch.nn as nn
from torch.utils import data
import torch.nn.functional as F
from torch.autograd import Variable
import torchvision
from tensorboardX import SummaryWriter
import numpy as np
import kornia
from models.uneted import UNetMatsm255, SpatialAttn, UNetMatsm255nsf
from models.patchgan import NLayerDiscriminator
from loaders.doc3dshadewblref_loader import Doc3dshadewblrefLoader
from loss import *
from utils import *
def train(args):
logdir='./checkpoints/'
arch='matunet'
dc_arch='patchgan'
root='/media/hilab/sagniksSSD/Sagnik/FoldedDocumentDataset/Doc3DShade/'
experiment_name='matshdunetsm255nsf_trainr_0.5l1chromal1pen[wbtex]advshdpen_rot_0.5l1chromal1penwb0.01texadvshd' #model_data_loss_augmentation_trainstart
if args.logtb:
writer = SummaryWriter(comment=experiment_name)
#get dataloader
l=Doc3dshadewblrefLoader(root=root, img_size=256, aug=True)
lv=Doc3dshadewblrefLoader(root=root, split='val', img_size=256)
trainloader=data.DataLoader(l, batch_size=args.batch, num_workers=5, shuffle=True)
valloader=data.DataLoader(lv, batch_size=args.batch, num_workers=5)
#get model
model= UNetMatsm255nsf(input_ch=3, output_ch=3)
model = torch.nn.DataParallel(model, device_ids=range(torch.cuda.device_count()))
model.cuda()
dc_model= NLayerDiscriminator(3, ndf=64, n_layers=4, norm_layer=nn.BatchNorm2d, use_sigmoid=False)
dc_model = torch.nn.DataParallel(dc_model, device_ids=range(torch.cuda.device_count()))
dc_model.cuda()
#optimizer
optimizer= torch.optim.Adam(model.parameters(),lr=args.l_rate, weight_decay=5e-4,amsgrad=True)
dc_optimizer= torch.optim.Adam(dc_model.parameters(),lr=args.l_rate_dc)
sched=torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', factor=0.5, patience=5, verbose=True)
dc_sched=torch.optim.lr_scheduler.ReduceLROnPlateau(dc_optimizer, mode='min', factor=0.5, patience=5, verbose=True)
epoch_start=1
#look for checkpoints
if args.resume is not None:
if os.path.isfile(args.resume):
print("Loading model and optimizer from checkpoint '{}'".format(args.resume))
checkpoint = torch.load(args.resume)
model.load_state_dict(checkpoint['model_state'], strict=False)
print("Loaded checkpoint '{}' (epoch {})".format(args.resume, checkpoint['epoch']))
epoch_start=checkpoint['epoch']+1
else:
print("No checkpoint found at '{}'".format(args.resume))
# Look for Discrminator checkpoint
if args.dc_resume is not None:
if os.path.isfile(args.dc_resume):
print("Loading model and optimizer from checkpoint '{}'".format(args.dc_resume))
checkpoint = torch.load(args.dc_resume)
dc_model.load_state_dict(checkpoint['model_state'], strict=False)
print("Loaded checkpoint '{}' (epoch {})".format(args.dc_resume, checkpoint['epoch']))
else:
print("No checkpoint found at '{}'".format(args.dc_resume))
#loss
# MSE=nn.MSELoss()
L1=nn.L1Loss()
L1sum=nn.L1Loss(reduction='sum')
#activation
htan=nn.Hardtanh(0,1)
global_step=1
#forward
avg_loss=0.0
# avg_trloss=0.0
best_val_loss=9999.0
eps=1e-2
best_val_wd=9999.0
# print epoch_start
one = torch.tensor(1.0).cuda()
mone = torch.tensor(-1.0).cuda()
dc_iter=5
for epoch in range(epoch_start,args.epochs):
train_loss=0.0
train_chroma=0.0
train_wd=0.0
avg_loss=0.0
model.train()
dc_model.train()
for i, d in enumerate(trainloader):
wbs=Variable(d['wbl'].cuda().float())
msks=Variable(d['msk'].cuda().float())
albs=Variable(d['alb'].cuda().float())
set_requires_grad(dc_model, False)
set_requires_grad(model, True)
optimizer.zero_grad()
dc_optimizer.zero_grad()
pred=model(wbs)
pred_mat=pred['mat']
pred_shd=pred['shd']
#calculate alb with material
pred_alb=torch.mul(pred_mat,albs)
#calculate shd with material
pred_matshd=torch.clamp(torch.mul(pred_mat, pred_shd),0,255.)/255.0
#predicted wb image
pred_wbs=torch.mul(pred_alb,pred_shd)
#predicted texture
pred_tex=torch.clamp(torch_masked_divide(wbs, pred_matshd)/255.0, 0, 1.0)
#predicted wbtex image
pred_wbtex=torch.mul(pred_matshd,pred_tex)
#estimated shading
shd_gt=Variable(torch.clamp(torch_masked_divide(wbs, pred_alb), 0, 255.0))
shd_gt = kornia.rgb_to_grayscale(shd_gt).expand_as(pred_shd)
chromaloss=chromaticity_mat_mse(pred_alb, pred_mat, wbs, msks)
constloss=L1(pred_shd,shd_gt)
# gloss, gt_grad=grad_loss(pred_shd, shd_gt, reduction='mean', invalid_msk=None)
wbloss=L1(pred_wbs, wbs) #TODO: scale invariant loss
wbtexloss=L1(pred_wbtex, wbs)
texloss=L1(pred_tex, albs)
shdpen= shading_l1_penalty(pred_shd)
if epoch > 3:
loss=chromaloss+(0.5*constloss)+wbtexloss+(0.05*shdpen)#+eloss
elif epoch>1 and epoch <= 3:
loss=chromaloss+(0.5*constloss)+wbtexloss#+(0.1*shdpen)
else:
loss=chromaloss
if epoch > 1:
#backward adv shd
# predicted shading should fake the discriminator
pred_fake = dc_model(pred_shd)
# print (pred_fake.shape)
loss_shd_gan = torch.mean(pred_fake)
loss_shd_gan.backward(mone, retain_graph=True)
loss.backward()
optimizer.step()
# track losses
avg_loss+=float(loss)
train_loss+=float(loss)
train_chroma+=float(chromaloss)
if epoch > 1:
set_requires_grad(dc_model, True)
set_requires_grad(model, False)
for dc_i in range(dc_iter):
# Update discriminator
dc_optimizer.zero_grad()
# Real
pred_real = dc_model(shd_gt.detach())
# print pred_real.shape
loss_D_real = torch.mean(pred_real)
# print loss_D_real
loss_D_real.backward(mone, retain_graph=True)
#backward D
pred_fake = dc_model(pred_shd.detach())
# print pred_fake.shape
loss_D_fake = torch.mean(pred_fake)
loss_D_fake.backward(one, retain_graph=True)
# calculate gradient penalty
gradient_penalty = calc_gradient_penalty(dc_model, shd_gt.detach(), pred_shd.detach())
gradient_penalty.backward()
# Combined loss
loss_D = loss_D_fake - loss_D_real + gradient_penalty
W_D = loss_D_fake - loss_D_real
dc_optimizer.step()
train_wd+=float(W_D)
else:
loss_D=loss_shd_gan=W_D=0.0
if (i+1) % 100 == 0:
avg_loss=avg_loss/100
print("Epoch[%d/%d] Batch [%d/%d] Loss: %.4f" % (epoch,args.epochs,i, len(trainloader), avg_loss))
avg_loss=0.0
if (i+1) % 10 == 0 and args.logtb:
# preds_d=denormalize_wbks(preds.detach())
# wbks_d=denormalize_wbks(wbks.detach())
idxs=torch.LongTensor(6).random_(0, wbs.shape[0])
grid_alb_pred = torchvision.utils.make_grid(pred_alb[idxs],normalize=True, scale_each=True)
grid_wbs_gt = torchvision.utils.make_grid(wbs[idxs],normalize=True, scale_each=True)
grid_wbs_pred = torchvision.utils.make_grid(pred_wbtex[idxs],normalize=True, scale_each=True)
grid_shd_gt = torchvision.utils.make_grid(shd_gt[idxs],normalize=True, scale_each=True)
grid_shd_pred = torchvision.utils.make_grid(pred_shd[idxs],normalize=True, scale_each=True)
grid_tex_pred = torchvision.utils.make_grid(pred_tex[idxs],normalize=True, scale_each=True)
grid_tex_gt = torchvision.utils.make_grid(albs[idxs],normalize=True, scale_each=True)
writer.add_image('wb_inp/train', grid_wbs_gt, global_step)
writer.add_image('wb_pred/train', grid_wbs_pred, global_step)
writer.add_image('alb_pred/train', grid_alb_pred, global_step)
writer.add_image('shd_gt/train', grid_shd_gt, global_step)
writer.add_image('shd_pred/train', grid_shd_pred, global_step)
writer.add_image('tex_gt/train', grid_tex_gt, global_step)
writer.add_image('tex_pred/train', grid_tex_pred, global_step)
writer.add_scalar('Loss/train', float(loss), global_step)
writer.add_scalar('CLoss/train', float(chromaloss), global_step)
writer.add_scalar('CnLoss/train', float(constloss), global_step)
writer.add_scalar('WbLoss/train', float(wbloss), global_step)
writer.add_scalar('TexLoss/train', float(texloss), global_step)
writer.add_scalar('disc_loss/train', float(loss_D), global_step)
writer.add_scalar('gen_loss/train', float(loss_shd_gan), global_step)
writer.add_scalar('em_dist/train', float(W_D), global_step)
global_step+=1
# break
# break
train_chroma=train_chroma/len(trainloader)
train_loss=train_loss/len(trainloader)
train_wd=train_wd/len(trainloader)
print("Training Chroma Loss:'{}'".format(train_chroma))
#validation
model.eval()
dc_model.eval()
val_chroma=0.0
val_const=0.0
val_loss=0.0
val_pos=0.0
val_wb=0.0
val_tex = 0.0
val_wd = 0.0
val_gan = 0.0
for i, d in tqdm(enumerate(valloader)):
with torch.no_grad():
wbs_val=Variable(d['wbl'].cuda().float())
msks=Variable(d['msk'].cuda().float())
albs_val=Variable(d['alb'].cuda().float())
pred_val=model(wbs_val)
pred_mat_val=pred_val['mat']
pred_shd_val=pred_val['shd']
pred_alb_val=torch.mul(pred_mat_val,albs_val)
# shd_val_gt=Variable(torch.clamp(torch.div(wbs_val,pred_alb_val+eps),0,1.0))
pred_wbs_val=torch.mul(pred_alb_val,pred_shd_val)
pred_matshd_val=torch.clamp(torch.mul(pred_mat_val, pred_shd_val),0,255.)/255.0
# pred_matshd_cpu=pred_matshd_val.detach().cpu().numpy()
# pred_alb_cpu=pred_alb_val.detach().cpu().numpy()
# wbs_cpu=wbs_val.detach().cpu().numpy()
# pred_tex_val=torch.from_numpy(np.divide(wbs_cpu,pred_matshd_cpu,out=np.zeros_like(pred_matshd_cpu), where=pred_matshd_cpu!=0)).cuda().float()
pred_tex_val=torch.clamp(torch_masked_divide(wbs_val, pred_matshd_val)/255.0, 0, 1.0)
# pred_wbtex_val=torch.mul(pred_matshd_val,pred_tex_val)
# shd_val_gt= Variable(torch.from_numpy(np.divide(wbs_cpu,pred_alb_cpu,out=np.zeros_like(pred_alb_cpu), where=pred_alb_cpu!=0)).cuda().float())
shd_val_gt=Variable(torch.clamp(torch_masked_divide(wbs_val, pred_alb_val), 0, 255.0))
shd_val_gt = kornia.rgb_to_grayscale(shd_val_gt).expand_as(pred_shd_val)
chromaloss=chromaticity_mat_mse(pred_alb_val, pred_mat_val, wbs_val, msks)
constloss=L1(pred_shd_val, shd_val_gt)
wbloss=L1(pred_wbs_val, wbs_val)
# wbtexloss=L1(pred_wbtex_val, wbs_val)
texloss=L1(pred_tex_val, albs_val)
val_chroma+=float(chromaloss)
val_const+=float(constloss)
val_wb+=float(wbloss)
val_tex+=float(texloss)
val_loss= float(chromaloss)+float(constloss)+float(wbloss)
# Fake
pred_fake= dc_model(pred_shd_val.detach())
loss_D_fake = torch.mean(pred_fake)
# Real
pred_real= dc_model(shd_val_gt)
loss_D_real = torch.mean(pred_real.detach())
W_D = loss_D_fake - loss_D_real
loss_bm_gan = torch.mean(pred_fake)
val_wd+=float(W_D)
val_gan+=float(loss_bm_gan)
val_chroma=val_chroma/len(valloader)
val_const=val_const/len(valloader)
val_loss=val_loss/len(valloader)
val_wb=val_wb/len(valloader)
val_wd=val_wd/len(valloader)
val_tex=val_tex/len(valloader)
val_gan=val_gan/len(valloader)
if args.logtb:
idxs=torch.LongTensor(6).random_(0, wbs_val.shape[0])
grid_alb_pred = torchvision.utils.make_grid(pred_alb_val[idxs],normalize=True, scale_each=True)
grid_wbs_gt = torchvision.utils.make_grid(wbs_val[idxs],normalize=True, scale_each=True)
grid_wbs_pred = torchvision.utils.make_grid(pred_wbs_val[idxs],normalize=True, scale_each=True)
grid_shd_pred = torchvision.utils.make_grid(pred_shd_val[idxs],normalize=True, scale_each=True)
grid_shd_gt = torchvision.utils.make_grid(shd_val_gt[idxs],normalize=True, scale_each=True)
grid_tex_pred = torchvision.utils.make_grid(pred_tex_val[idxs],normalize=True, scale_each=True)
grid_tex_gt = torchvision.utils.make_grid(albs_val[idxs],normalize=True, scale_each=True)
writer.add_image('alb_pred/val', grid_alb_pred, global_step)
writer.add_image('wb_inp/val', grid_wbs_gt, global_step)
writer.add_image('wb_pred/val', grid_wbs_pred, global_step)
writer.add_image('shd_gt/val', grid_shd_gt, global_step)
writer.add_image('shd_pred/val', grid_shd_pred, global_step)
writer.add_image('tex_gt/train', grid_tex_gt, global_step)
writer.add_image('tex_pred/train', grid_tex_pred, global_step)
writer.add_scalar('Loss/val', float(val_loss), global_step)
writer.add_scalar('CLoss/val', float(val_chroma), global_step)
writer.add_scalar('CnLoss/val', float(val_const), global_step)
writer.add_scalar('WbLoss/val', float(val_wb), global_step)
writer.add_scalar('TexLoss/val', float(val_tex), global_step)
writer.add_scalar('gen_loss/val', float(val_gan), global_step)
writer.add_scalar('em_dist/val', float(val_wd), global_step)
print("Validation Chroma Loss:'{}'".format(val_chroma))
sched.step(val_loss)
dc_sched.step(val_wd)
if val_loss < best_val_loss:
best_val_loss=val_loss
state = {'epoch': epoch,'model_state': model.state_dict()}
torch.save(state, logdir+"{}_{}_{}_{}_{}_best_model.pkl".format(arch,epoch,val_loss,train_loss,experiment_name))
if val_wd < best_val_wd:
best_val_wd=val_wd
state = {'epoch': epoch,'model_state': dc_model.state_dict()}
torch.save(state, logdir+"{}_{}_{}_{}_{}_best_model.pkl".format(dc_arch,epoch,val_wd,train_wd,experiment_name))
if (epoch % 5)==0:
state = {'epoch': epoch,'model_state': model.state_dict()}
torch.save(state, logdir+"{}_{}_{}_{}_{}_model.pkl".format(arch,epoch,val_loss,train_loss,experiment_name))
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Hyperparams')
parser.add_argument('--imgsize', nargs='?', type=int, default=256, help='image size')
parser.add_argument('--epochs', nargs='?', type=int, default=100, help='num of epochs')
parser.add_argument('--batch', nargs='?', type=int, default=50, help='batch size')
parser.add_argument('--resume', nargs='?', type=str, default=None, help='Path to the checkpoint')
parser.add_argument('--dc_resume', nargs='?', type=str, default=None, help='Path to the discriminator checkpoint')
parser.add_argument('--l_rate', nargs='?', type=float, default=0.0001, help='Learning rate')
parser.add_argument('--l_rate_dc', nargs='?', type=float, default=0.00001, help='Learning rate of the Discriminator')
parser.add_argument('--logtb', nargs='?', type=bool, default=False, help='use tensorboard')
args = parser.parse_args()
#model=ImgCamNet(args)
#print model
train(args)