-
Notifications
You must be signed in to change notification settings - Fork 93
/
Copy pathextract_predictions.lua
91 lines (70 loc) · 2.73 KB
/
extract_predictions.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
require 'torch'
require 'nn'
require 'audio'
require 'hdf5'
require 'cunn'
require 'cudnn'
opt = {
model = "models/soundnet8_final.t7", -- which soundnet model to load
list = "", -- text file listing mp3's to process, one per line
write=0,
force=0, -- force overwrite
}
-- one-line argument parser. parses enviroment variables to override the defaults
for k,v in pairs(opt) do opt[k] = tonumber(os.getenv(k)) or os.getenv(k) or opt[k] end
print(opt)
if opt.list == '' then error('you must specify text file of audio files to process') end
-- set good defaults
torch.manualSeed(0)
torch.setnumthreads(1)
torch.setdefaulttensortype('torch.FloatTensor')
cutorch.setDevice(1)
-- load the network
print('Loading network: ' .. opt.model)
local net = torch.load(opt.model)
for i=1,3 do net:remove(#net.modules) end
net:add(nn.MapTable():add(cudnn.SpatialSoftMax()))
net:cuda()
print('Network:')
print(net)
net:evaluate()
-- http://stackoverflow.com/questions/4990990/lua-check-if-a-file-exists
function file_exists(name)
local f=io.open(name,"r")
if f~=nil then io.close(f) return true else return false end
end
-- read in categories
local places_cats = {}
local imagenet_cats = {}
for line in io.lines('categories/categories_places2.txt') do table.insert(places_cats, line) end
for line in io.lines('categories/categories_imagenet.txt') do table.insert(imagenet_cats, line) end
local min_length = 10*22050
for line in io.lines(opt.list) do
local out_file = line .. '.soundnet_categories.h5'
if file_exists(out_file) and opt.force ~= 1 then
print('Skip ' .. out_file)
else
local sound = audio.load(line)
-- data preprocessing
if sound:size(2) > 1 then sound = sound:select(2,1):clone() end -- select first channel (mono)
sound:mul(2^-23) -- make range [-256, 256]
sound = sound:view(1, 1, -1, 1) -- shape to BatchSize x 1 x DIM x 1
if sound:size(3) < min_length then
sound = sound:repeatTensor(1,1,math.ceil(min_length/sound:size(3)),1)
end
sound = sound:cuda() -- ship to GPU
-- forward pass
local feat = net:forward(sound)
if opt.write then
local fd = hdf5.open(out_file, 'w')
fd:write('object', feat[1]:float())
fd:write('scene', feat[2]:float())
fd:close()
end
local mid_idx = math.ceil(feat[1]:size(3)/2)
local _, imagenet_idx = feat[1]:float():select(3, mid_idx):squeeze():max(1)
local _, places_idx = feat[2]:float():select(3, mid_idx):squeeze():max(1)
print(('Video: %s Object: %s Scene: %s'):format(line, imagenet_cats[imagenet_idx[1]], places_cats[places_idx[1]]))
end
net:clearState()
end