-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpaper.bib
857 lines (748 loc) · 27.1 KB
/
paper.bib
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
@MISC{mlperf-training-rules,
title = "{MLPerf} Training Rules",
author = "{MLCommons}",
howpublished = {GitHub},
url= {https://github.com/mlperf/training_policies/blob/master/training_rules.adoc},
note = "[Last Accessed: 30th June, 2022]"
}
@MISC{mlperf-hpc-training-rules,
title = "{MLPerf} {HPC} Training Rules",
author = "{MLCommons}",
howpublished = {GitHub},
url = {https://github.com/mlcommons/training_policies/blob/master/training_rules.adoc},
note = "[Last Accessed: 30th June, 2022]"
}
@ARTICLE{mattson:micro:2020,
title = "{MLPerf}: An Industry Standard Benchmark Suite for
Machine Learning Performance",
author = "Mattson, Peter and Reddi, Vijay Janapa and Cheng,
Christine and Coleman, Cody and Diamos, Greg and
Kanter, David and Micikevicius, Paulius and
Patterson, David and Schmuelling, Guenther and Tang,
Hanlin and Wei, Gu-Yeon and Wu, Carole-Jean",
journal = "IEEE Micro",
publisher = "ieeexplore.ieee.org",
volume = 40,
number = 2,
pages = "8--16",
month = mar,
year = 2020,
}
@INPROCEEDINGS{wu:icpp:2019,
title = "Performance, Energy, and Scalability Analysis and
Improvement of Parallel Cancer Deep Learning
{CANDLE} Benchmarks",
booktitle = "Proceedings of the 48th International Conference on
Parallel Processing",
author = "Wu, Xingfu and Taylor, Valerie and Wozniak, Justin M
and Stevens, Rick and Brettin, Thomas and Xia,
Fangfang",
publisher = "Association for Computing Machinery",
number = "Article 78",
pages = "1--11",
series = "ICPP 2019",
month = aug,
year = 2019,
address = "New York, NY, USA",
location = "Kyoto, Japan"
}
@MISC{Kanter2022-xb,
title = "{MLCommons} Community Meeting Slides {1Q22}",
author = "Kanter, David",
month = apr,
year = 2022,
howpublished = {Google Drive},
url = {https://drive.google.com/file/d/1ZEHLF5WG0S1MAOAKsD3uQxgIbsuNAN1q/view?usp=sharing},
note = "[Last Accessed: 30th June, 2022]"
}
@MISC{Kanter2022-mg,
title = "{MLCommons} Community Meeting Talk Recordings
{1Q22}",
author = "Kanter, David",
month = apr,
year = 2022,
howpublished = {Google Drive},
url = {https://drive.google.com/drive/u/1/folders/1a9tKPunFZFLZkjGdL53qR4yTNb1N-Kv8},
note = "[Last Accessed: 30th June, 2022]"
}
@MISC{mlperf-hpc-page,
key ={mlperf},
title = "Inside {HPC}, {MLPerf-HPC} Working Group seeks
participation,",
howpublished = {Web Page},
url =
{https://insidehpc.com/2020/02/mlperf-hpc-working-group-seeks-participation/},
note = "[Last Accessed: 30th June, 2022]"
}
@MISC{noauthor_undated-eu,
key = {mlcommons},
title = "Philosophy of {MLCommons}",
howpublished = {Web Page},
url={https://mlcommons.org/en/philosophy/},
note = "[Last Accessed: 30th June, 2022]"
}
@BOOK{tanaka:2021,
title = "Deep Learning and Physics",
author = "Tanaka, Akinori and Tomiya, Akio and Hashimoto,
Koji",
publisher = "Springer, Singapore",
year = 2021
}
@BOOK{Alok_Choudhary_Geoffrey_Fox_Tony_Hey2022-fb,
title = "{AI} for Science",
editor = "{Alok Choudhary, Geoffrey Fox, Tony Hey}",
publisher = "World Scientific Publishers",
month = dec,
year = 2022
}
@MISC{Javier_Duarte_Nhan_Tran_Ben_Hawks_Christian_Herwig_Jules_Muhizi_Shvetank_Prakash_Vijay_Janapa_Reddi_undated-kh,
title = "{FASTML} {SCIENCE} {BENCHMARKS}: {ACCELERATING}
{REAL-TIME} {SCIENTIFIC} {EDGE} {MACHINE}
{LEARNING}",
author = "{Javier Duarte, Nhan Tran, Ben Hawks, Christian
Herwig, Jules Muhizi, Shvetank Prakash, Vijay Janapa
Reddi}",
howpublished = {Google Drive},
url = {https://drive.google.com/file/d/1NSVAhVPAKCqOLCqH8xrUJNNgW_rWOvO-/view?usp=sharing},
note = "Accessed: 2022-5-7"
}
@MISC{ai4s-nips-2021,
key = {{AI For Science Community}},
title = "{AI} for Science: Mind the Gaps: A {NeurIPS} 2021
Workshop",
howpublished = {GitHub},
url = {https://ai4sciencecommunity.github.io/},
note = "[Last Accessed: 30th June, 2022]"
}
@MISC{mlcommons-history,
key = {mlcommons},
title = "History of {MLCommons}",
howpublished = {Web Page},
url={https://mlcommons.org/en/history/},
note = "[Last Accessed: 30th June, 2022]"
}
@MISC{mlcommons-science,
title = "Science Data working Group of {MLCommons} Research",
author = {Fox, Geoffrey and Hey, Tony and Thiyagalingam, Jeyan},
howpublished = {Web Page},
url = {https://mlcommons.org/en/groups/research-science/},
note = "[Last Accessed: 30th June, 2022]"
}
@MISC{mlcommons-training-page,
key = {mlcommons},
title = "{HPC} {MLCommons} Training Working Group",
howpublished = {Web Page},
url = {https://mlcommons.org/en/groups/training-hpc/},
note = "[Last Accessed: 30th June, 2022]"
}
@MISC{ai4s-icml-22,
key = {AI for Science},
title = "2nd {AI} for Science An {ICML} 2022 Workshop",
howpublished = {Web Page},
url = {http://www.ai4science.net/icml22/},
note = "[Last Accessed: 30th June, 2022]"
}
# thisneeds to be converted to techreport
@ARTICLE{Laanait2019-gm,
title = "Exascale Deep Learning for Scientific Inverse
Problems",
author = "Laanait, Nouamane and Romero, Joshua and Yin, Junqi
and Todd Young, M and Treichler, Sean and
Starchenko, Vitalii and Borisevich, Albina and
Sergeev, Alex and Matheson, Michael",
month = sep,
year = 2019,
journal = "arXiv",
eprint = "1909.11150"
}
# thisneeds to be converted to techreport
@ARTICLE{Banbury2021-pk,
title = "{MLPerf} Tiny Benchmark",
author = "Banbury, Colby and Reddi, Vijay Janapa and Torelli,
Peter and Holleman, Jeremy and Jeffries, Nat and
Kiraly, Csaba and Montino, Pietro and Kanter, David
and Ahmed, Sebastian and Pau, Danilo and Thakker,
Urmish and Torrini, Antonio and Warden, Peter and
Cordaro, Jay and Di Guglielmo, Giuseppe and Duarte,
Javier and Gibellini, Stephen and Parekh, Videet and
Tran, Honson and Tran, Nhan and Wenxu, Niu and
Xuesong, Xu",
month = jun,
year = 2021,
journal = {arXiv},
archivePrefix ="arXiv",
primaryClass = "cs.LG",
eprint = "2106.07597"
}
@INPROCEEDINGS{Huang2019-nu,
title = "Benchmarking Deep Learning for Time Series:
Challenges and Directions",
booktitle = "2019 {IEEE} International Conference on Big Data
(Big Data)",
author = "Huang, X and Fox, G C and Serebryakov, S and Mohan,
A and Morkisz, P and Dutta, D",
publisher = "ieeexplore.ieee.org",
pages = "5679--5682",
month = dec,
year = 2019,
}
@MISC{mlcommons-github,
title = "{MLCommons} {GitHub}",
howpublished = {GitHub},
url = {https://github.com/mlcommons},
note = "[Last Accessed: 30th June, 2022]"
}
@MISC{mlcommons-org,
title = "{MLCommons} Homepage: Machine learning innovation to
benefit everyone",
howpublished = {Web Page},
url = {https://mlcommons.org/en/},
note = "[Last Accessed: 30th June, 2022]"
}
@MISC{mlcommons-research-groups,
title = "{MLCommons} Research Working Group, Home Page",
author = "{Gennady Pekhimenko,Vijay Janapa Reddi}",
url= {https://mlcommons.org/en/groups/research/},
howpublished = {Web Page},
note = "[Last Accessed: 30th June, 2022]"
}
@ARTICLE{Janapa_Reddi2022-mf,
title = "{MLPerf} mobile inference benchmark: An
industry-standard open-source machine learning
benchmark for on-device {AI}",
author = "Janapa Reddi, Vijay and Kanter, David and Mattson,
Peter and Duke, Jared and Nguyen, Thai and Chukka,
Ramesh and Shiring, Ken and Tan, Koan-Sin and
Charlebois, Mark and Chou, William and El-Khamy,
Mostafa and Hong, Jungwook and St John, Tom and
Trinh, Cindy and Buch, Michael and Mazumder, Mark
and Markovic, Relja and Atta, Thomas and Cakir,
Fatih and Charkhabi, Masoud and Chen, Xiaodong and
Chiang, Cheng-Ming and Dexter, Dave and Heo, Terry
and Schmuelling, Guenther and Shabani, Maryam and
Zika, Dylan",
journal = "Proceedings of Machine Learning and Systems",
publisher = "proceedings.mlsys.org",
volume = 4,
month = apr,
year = 2022
}
@ARTICLE{Emani2021-ba,
title = "Accelerating Scientific Applications With
{SambaNova} Reconfigurable Dataflow Architecture",
author = "{Emani} and {Vishwanath} and {Adams} and {Papka} and
{Stevens} and {Florescu} and {Jairath} and {Liu} and
{Nama} and {Sujeeth}",
journal = "Comput. Sci. Eng.",
publisher = "computer.org",
volume = 23,
pages = "114--119",
month = mar,
year = 2021
}
@ARTICLE{Reddi2021-wc,
title = "The Vision Behind {MLPerf}: Understanding {AI}
Inference Performance",
author = "Reddi, Vijay Janapa and Cheng, Christine and Kanter,
David and Mattson, Peter and Schmuelling, Guenther
and Wu, Carole-Jean",
journal = "IEEE Micro",
publisher = "ieeexplore.ieee.org",
volume = 41,
number = 3,
pages = "10--18",
month = may,
year = 2021,
}
@MISC{Geoffrey_Fox_Tony_Hey_Jeyan_Thiyagalingam_undated-wt,
title = "Minutes of the {MLCommons} Research Science Working
Group",
author = {Fox, Geoffrey and Hey, Tony and Thiyagalingam, Jeyan},
howpublished = {Google Drive},
url = {https://docs.google.com/document/d/167m7FK6-Ud4M5gXta5cIc1hKqaRHkk2B1GyKasdeQLc/edit?usp=sharing},
note = "[Last Accessed: 30th June, 2022]"
}
@MISC{ai4s-doe-report,
author = {{Department of Energy}},
title = "{Artificial Intelligence for Science in the {US} Department of Energy}",
url = {https://science.osti.gov/Initiatives/AI},
note = "[Last Accessed: 30th June, 2022]"
}
@INPROCEEDINGS{Reddi2020-ky,
title = "{MLPerf} Inference Benchmark",
booktitle = "2020 {ACM/IEEE} 47th Annual International Symposium
on Computer Architecture ({ISCA})",
author = "Reddi, Vijay Janapa and Cheng, Christine and Kanter,
David and Mattson, Peter and Schmuelling, Guenther
and Wu, Carole-Jean and Anderson, Brian and Breughe,
Maximilien and Charlebois, Mark and Chou, William
and Chukka, Ramesh and Coleman, Cody and Davis, Sam
and Deng, Pan and Diamos, Greg and Duke, Jared and
Fick, Dave and Gardner, J Scott and Hubara, Itay and
Idgunji, Sachin and Jablin, Thomas B and Jiao, Jeff
and John, Tom St and Kanwar, Pankaj and Lee, David
and Liao, Jeffery and Lokhmotov, Anton and Massa,
Francisco and Meng, Peng and Micikevicius, Paulius
and Osborne, Colin and Pekhimenko, Gennady and
Rajan, Arun Tejusve Raghunath and Sequeira, Dilip
and Sirasao, Ashish and Sun, Fei and Tang, Hanlin
and Thomson, Michael and Wei, Frank and Wu, Ephrem
and Xu, Lingjie and Yamada, Koichi and Yu, Bing and
Yuan, George and Zhong, Aaron and Zhang, Peizhao and
Zhou, Yuchen",
publisher = "ieeexplore.ieee.org",
pages = "446--459",
month = may,
year = 2020,
}
% The entry below contains non-ASCII chars that could not be converted
% to a LaTeX equivalent.
# thisneeds to be converted to techreport
@ARTICLE{Reddi2020-zr,
title = "{MLPerf} mobile inference benchmark",
author = "Reddi, V J and Kanter, D and Mattson, P and Duke, J
and {others}",
journal = "arXiv preprint arXiv",
publisher = "arxiv.org",
year = 2020
}
@MISC{Lawrence_Livermore_National_Laboratory_undated-pk,
title = "{MLCommons} Science Research: {LLNL} Dynamic {4DCT}
Datasets using {MPM-based} Deformation",
author = "{Lawrence Livermore National Laboratory}",
howpublished = {Google Drive},
url = {https://drive.google.com/file/d/1kbFcgo_ZxG2G_O6DavyQAwQi4fezYQ3l/view?usp=sharing},
note = "Accessed: 2022-5-7"
}
@InProceedings{rodenberger-15,
author = "Ronneberger, Olaf and Fischer, Philipp and Brox,
Thomas",
title = "U-Net: Convolutional Networks for Biomedical Image
Segmentation",
booktitle = "Medical Image Computing and Computer-Assisted
Intervention -- MICCAI 2015",
year = 2015,
publisher = "Springer ",
pages = "234--241",
}
# thisneeds to be converted to techreport
@article{laanait-19,
author = {Nouamane Laanait and Joshua Romero and Junqi Yin and
M. Todd Young and Sean Treichler and Vitalii
Starchenko and Albina Y. Borisevich and Alex Sergeev
and Michael A. Matheson},
title = {Exascale Deep Learning for Scientific Inverse
Problems},
journal = {CoRR},
volume = {abs/1909.11150},
year = 2019,
url = {http://arxiv.org/abs/1909.11150},
eprinttype = {arXiv},
eprint = {1909.11150},
timestamp = {Fri, 30 Jul 2021 08:47:38 +0200},
biburl =
{https://dblp.org/rec/journals/corr/abs-1909-11150.bib},
bibsource = {dblp computer science bibliography,
https://dblp.org}
}
@misc{laanait-scanning,
url = {https://www.osti.gov/servlets/purl/1510313/},
author = {Laanait, Nouamane and Borisevich, Albina and Yin,
Junqi},
language = {en},
title = {A Database of Convergent Beam Electron Diffraction
Patterns for Machine Learning of the Structural
Properties of Materials},
publisher = {Oak Ridge Leadership Computing Facility; Oak Ridge
National Laboratory (ORNL), Oak Ridge, TN (United
States)},
year = 2019
}
@misc{laanait-classifier-whitepaper,
author = {N Laanait and J Yin, A Borisevich},
title = {{SMC data challenges: Towards a Universal Classifier
for Crystallographic Space Groups}},
publisher = {Oak Ridge Leadership Computing Facility; Oak Ridge
National Laboratory (ORNL), Oak Ridge, United
States},
year = 2020,
url = {https://bityl.co/COsc},
}
@InProceedings{brown2022smcefr
,author={Cade Brown and Piotr Luszczek}
,title={{SMCEFR:} {Sentinel-3} Satellite Dataset}
,publisher={Springer International Publishing}
,note={\url{https://smc-datachallenge.ornl.gov/ch6-satellite-datasets/}}
,year=2022
}
@InProceedings{pan-20,
author = {Pan, Jin},
title = "Probability Flow for Classifying Crystallographic
Space Groups",
booktitle = "Driving Scientific and Engineering Discoveries
Through the Convergence of HPC, Big Data and AI",
year = 2020,
publisher = "Springer",
pages = "451--464",
}
@misc{stemdl-benchmark,
author = {{STEMDL Benchmark}},
title = {{STEMDL Benchmark}},
howpublished = {GitHub},
note = {[Last accessed 30th June 2022]},
url = {https://github.com/at-aaims/stemdl-benchmark}
}
@misc{data-challenge,
author = {{ORNL}},
title = {{2020: Challenge 2: SMC Data Challange 2021}},
note = {[Last accessed 30th June 2022]},
url = {https://smc-datachallenge.ornl.gov/challenge-2-2020}
}
@misc{stemdl-70,
author = {ORNL},
title = {{10.13139/OLCF/1510313}},
note = {[Last accessed 30th June 2022]},
url = {https://doi.ccs.ornl.gov/ui/doi/70}
}
# thisneeds to be converted to techreport
@misc{laanait-ms-19,
url = {https://arxiv.org/abs/1909.11150},
author = {Laanait, Nouamane and Romero, Joshua and Yin, Junqi
and Young, M. Todd and Treichler, Sean and
Starchenko, Vitalii and Borisevich, Albina and
Sergeev, Alex and Matheson, Michael},
title = {Exascale Deep Learning for Scientific Inverse
Problems},
publisher = {arXiv},
year = 2019,
}
@article{nash-79,
title = {River flow forecasting through conceptual models
part I -- A discussion of principles},
journal = {Journal of Hydrology},
volume = 10,
number = 3,
pages = {282-290},
year = 1970,
issn = {0022-1694},
author = {J.E. Nash and J.V. Sutcliffe},
}
@article{TFT-21,
title = {Temporal Fusion Transformers for interpretable
multi-horizon time series forecasting},
journal = {International Journal of Forecasting},
volume = 37,
number = 4,
pages = {1748-1764},
year = 2021,
author = {Bryan Lim and Sercan {\"O}. Ar{\i}k and Nicolas Loeff and
Tomas Pfister},
}
@misc{eq-transformer-2010,
title = {{Science Data Processing: Examples in Jupyter Notebook}},
author = {Geoffrey C. Fox},
year = 2010,
month = apr,
note = {[Last accessed 30th June 2022]},
url = {https://ggle.io/58zu}
}
@misc{eq-data,
key = {earthquake},
title = {{Earthquake Data}},
note = {[Last accessed 30th June 2022]},
url = {https://github.com/laszewsk/mlcommons-data-earthquake},
}
@misc{eq-code,
author = {Fox, Geoffrey C and von Laszewski, Gregor and Robert Knuuti and Thomas Butler and Jake Kolesar},
title = "{MLCommons Science Benchmark Earthquake Code}",
url = {https://bityl.co/COro},
urldate = {05/22/2022}
}
@misc{eq-presentation,
title = {{Earthquakes for Real}},
AUTHOR = {Geoffrey C. Fox},
howpublished = {Presentations},
year = 2022,
month = may,
note = {[Last accessed 30th June 2022]},
url = {https://ggle.io/58zv}
}
@misc{eq-catalog,
author = {{USGS}},
title = {{Search Earthquake Catalog}},
year = 2022,
month = may,
note = {[Last accessed 30th June 2022]},
url = {https://earthquake.usgs.gov/earthquakes/search}
}
@misc{google-models,
key = {google},
title = {{Google Cloud Model Cards}},
year = 2022,
month = may,
note = {[Last accessed 30th June 2022]},
url = {https://modelcards.withgoogle.com/model-reports}
}
@inproceedings{Mitchell_2019,
year = 2019,
month = {jan},
publisher = {{ACM} },
author = {Margaret Mitchell and Simone Wu and Andrew Zaldivar
and Parker Barnes and Lucy Vasserman and Ben
Hutchinson and Elena Spitzer and Inioluwa Deborah
Raji and Timnit Gebru},
title = {Model Cards for Model Reporting},
booktitle = {Proceedings of the Conference on Fairness,
Accountability, and Transparency}
}
@article{wilkinson2016fair,
author = {Mark D. Wilkinson and others},
title={The {FAIR} Guiding Principles for scientific data management and stewardship},
journal={Scientific Data},
volume=3,
number=1,
month = mar,
publisher = {Springer Science and Business Media {LLC}},
year=2016
}
@misc{mlcommons:2022:science:policy,
author = {von Laszewski, Gregor and Juri Papay, Jeyan Thiyagalingam, Geoffrey fox and Tony Hey},
title = {Draft: MLCommons Science Policy},
howpublished = {GitHub},
year = {2022},
month = may,
note = {[Last accessed 30th June 2022]},
url = {https://github.com/laszewsk/mlcommons/blob/main/www/content/en/docs/policy.adoc}
}
@misc{cloudmask-poster,
author = {Katherine Kilpatrick and Susan Walsh and Peter Minnett},
title = {Improved cloud mask for NASA sea-surface temperature products from MODIS and VIIRS},
howpublished = {Online},
year = {2022},
note = {[Last accessed 30th June 2022]},
url = {http://adf5c324e923ecfe4e0a-6a79b2e2bae065313f2de67bbbf078a3.r67.cf1.rackcdn.com/GHRSST%20XIX/P32-Kilpatrick%20et%20al.Minnett_GHRSST%20XIX_reduced.pdf}
}
}
@ARTICLE{fox2022-jm,
title = "Earthquake Nowcasting with Deep Learning",
author = "Fox, Geoffrey and Rundle, John and Donnellan, Andrea
and Feng, Bo",
journal = "Geohazards",
publisher = "MDPI",
volume = 3,
number = 2,
pages = 199,
month = apr,
year = 2022
}
@misc{cloudmesh-sbatch,
author = {von Laszewski, Gregor and Robert Knuuti},
title = {{cloudmesh-sbatch}},
journal = {GitHub},
note = {[Last accessed 30th June 2022]},
url = {https://github.com/cloudmesh/cloudmesh-sbatch}
}
@misc{cloudmesh-stopwatch,
author = {von Laszewski, Gregor},
title = {Cloudmesh Common StopWatch},
url = {https://github.com/cloudmesh/cloudmesh-common/blob/main/cloudmesh/common/StopWatch.py},
month = May,
year = 2022,
urldate = {05/22/2022}
}
@misc{cloudmesh-gpu,
author = {von Laszewski, Gregor},
title = {Cloudmesh GPU Monitor},
howpublished = {Web Page},
url = {https://github.com/cloudmesh/cloudmesh-gpu},
month = {May},
year = 2022
}
@misc{namsa,
title = {NAMSA},
author = {Laanait, Nouamane and Yin, Junqi and USDOE},
url = {https://www.osti.gov/biblio/1631694},
year = 2019,
month = {Aug},
}
@article {roysoc:tonyhey,
Title = {Machine learning and big scientific data},
Author = {Hey, Tony and Butler, Keith and Jackson, Sam and Thiyagalingam, Jeyan},
Number = {2166},
Volume = {378},
Month = {March},
Year = {2020},
Journal = {Philosophical transactions. Series A, Mathematical, physical, and engineering sciences},
Pages = {20190054},
}
@article {natrev:jeyan,
Title = {Scientific Machine Learning Benchmarks},
Author = { Thiyagalingam, Jeyan and Shankar, Mallikarjun and Fox, Geoffrey and Hey, Tony},
Month = {April},
Year = {2022},
Journal = {Nature Reviews Physics},
}
@article{jtmnras2,
author = {Henghes, Ben and Thiyagalingam, Jeyan and Pettitt, Connor and Hey, Tony and Lahav, Ofer},
title = "{Deep learning methods for obtaining photometric redshift estimations from images}",
journal = {Monthly Notices of the Royal Astronomical Society},
volume = {512},
number = {2},
pages = {1696-1709},
year = {2022},
month = {Feb},
}
@article{jtmnras1,
author = {Henghes, Ben and Pettitt, Connor and Thiyagalingam, Jeyan and Hey, Tony and Lahav, Ofer},
title = "{Benchmarking and scalability of machine-learning methods for photometric redshift estimation}",
journal = {Monthly Notices of the Royal Astronomical Society},
volume = {505},
number = {4},
pages = {4847-4856},
year = {2021},
month = {May},
}
@article{bbab493:protein,
author = {Tran, Ngoc Hieu and Xu, Jinbo and Li, Ming},
title = "{A tale of solving two computational challenges in protein science: neoantigen prediction and protein structure prediction}",
journal = {Briefings in Bioinformatics},
volume = {23},
number = {1},
year = {2021},
month = {Dec},
}
@article{pnas:2020:baker,
author = {Jianyi Yang and Ivan Anishchenko and Hahnbeom Park and Zhenling Peng and Sergey Ovchinnikov and David Baker },
title = {Improved protein structure prediction using predicted interresidue orientations},
journal = {Proceedings of the National Academy of Sciences},
volume = {117},
number = {3},
pages = {1496-1503},
year = {2020},
}
@article{2020:callaway,
author = {Ewen Callaway},
title = "{It will change everything: DeepMind’s AI makes gigantic leap in solving protein structures}",
journal = {Nature},
volume = {588},
pages = {203-204},
year = {2020},
}
@article{2021:jumper,
author = {Jumper, J. and Evans, R. and Pritzel, A. and others},
title = {Highly accurate protein structure prediction with AlphaFold},
journal = {Nature},
volume = {596},
pages = {583-589},
year = {2021},
}
@misc{tensorflow2015-whitepaper,
title={ {TensorFlow}: Large-Scale Machine Learning on Heterogeneous Systems},
url={https://www.tensorflow.org/},
note={Software available from tensorflow.org},
author={
Mart\'{i}n~Abadi and others
},
year={2015},
}
@misc{chollet2015keras,
title={Keras},
author={Chollet, Fran\c{c}ois and others},
year={2015},
howpublished={\url{https://keras.io}},
}
@MISC{sciml-bench:2021,
title = "sciml-bench: {SciML} Benchmarking Suite for {AI} for
Science",
author = {Thiyagalingam, Jeyan and Leng, Kuangdai and Jackson, Samuel and
Papay, Juri and Shankar, Mallikarjun and Fox, Geoffrey and Hey, Tony},
year = 2021,
howpublished = {GitHub},
url = {https://github.com/stfc-sciml/sciml-bench},
note = {[Last accessed 30th June 2022]},
}
@MISC{cloudmask-implementation,
title = "sciml-bench: {SciML} Benchmarking Suite for {AI} for
Science: Cloud Masking Benchmark",
author = {Jackson, Samuel and Cox, Caroline and Thiyagalingam, Jeyan and Hey, Tony},
year = 2021,
howpublished = {GitHub},
url = {https://github.com/stfc-sciml/sciml-bench/tree/master/sciml_bench/benchmarks/slstr_cloud},
note = {[Last accessed 30th June 2022]},
}
@article{merchant:2005,
author = {Merchant, C. J. and Harris, A. R. and Maturi, E. and Maccallum, S.},
title = {Probabilistic physically based cloud screening of satellite infrared imagery for operational sea surface temperature retrieval},
journal = {Quarterly Journal of the Royal Meteorological Society},
volume = {131},
number = {611},
pages = {2735-2755},
year = {2005}
}
@misc{theta_platform,
author ={Argone Leadership Computing Facility (ALCF)},
title = {Theta/ThetaGPU},
howpublished = {\url{https://www.alcf.anl.gov/alcf-resources/theta}},
note = {[Last accessed 30th June 2022]},
}
@misc{summit_platform,
author ={Oak Ridge Leadership Computing Facility (OLCF)},
title = {Summit},
howpublished = {\url{https://www.olcf.ornl.gov/summit/}},
note = {[Last accessed 30th June 2022]},
}
@misc{pearl_platform,
author ={STFC PEARL Facility, Scientific Computing Department (SCD)},
title = {Pearl},
howpublished = {\url{https://www.turing.ac.uk/research/asg/pearl}},
note = {[Last accessed 30th June 2022]},
}
@misc{ceda,
author ={Centrte for Environmental Data Analytics (CEDA)},
title ={Centre for Environmental Data Analytics (CEDA)},
howpublished = {\url{https://www.ceda.ac.uk/}},
note = {[Last accessed 30th June 2022]},
}
@misc{candle,
author = {{Argonne National Laboratory}},
title = {{ECP CANDLE benchmarks}},
note = {https://github.com/ECP-CANDLE/Benchmarks}
}
@misc{candle-uno-data,
key = {uno},
title = {{Index of Pilot1 CANDLE-UNO Benchmark}},
note = {[Last accessed 30th June 2022]},
url = {https://ftp.mcs.anl.gov/pub/candle/public/benchmarks/Pilot1/combo}
}
@misc{candle-uno-code-github,
author = {{ECP-CANDLE}},
title = {{Benchmarks}},
howpublished = {GitHub},
note = {[Last accessed 30th June 2022]},
url = {https://github.com/ECP-CANDLE/Benchmarks/tree/master/Pilot1/Uno}
}
@misc{candle-uno-readme,
author = {{ECP-CANDLE}},
title = {{Candle UNO Readme}},
howpublished = {GitHub},
year = 2022,
month = may,
note = {[Last accessed 30th June 2022]},
url = {https://github.com/ECP-CANDLE/Benchmarks/blob/develop/Pilot1/Uno/README.AUC.md}
}
@misc{candle-uno-data-3,
key = {uno},
title = {{Candle Uno Data in h5 format}},
year = 2022,
howpublished = {FTP server},
month = may,
note = {[Last accessed 30th June 2022]},
url = {https://ftp.mcs.anl.gov/pub/candle/public/benchmarks/Pilot1/uno/top_21_auc_1fold.uno.h5}
}
@article{hpc-wg-arxiv,
url = {https://arxiv.org/abs/2110.11466},
author = {Steven Farrell and others},
title = "{MLPerf HPC: A Holistic Benchmark Suite for Scientific Machine Learning on HPC Systems}",
publisher = {arXiv},
year = {2021},
}