forked from microsoft/CyberBattleSim
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnotebook_all_agents_benchmark.py
215 lines (183 loc) · 5.29 KB
/
notebook_all_agents_benchmark.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.
"""Random agent with credential lookup (notebook)
This notebooks can be run directly from VSCode, to generate a
traditional Jupyter Notebook to open in your browser
you can run the VSCode command `Export Currenty Python File As Jupyter Notebook`.
"""
# pylint: disable=invalid-name
# %% [markdown]
# # Chain network CyberBattle Gym played by a random agent with credential cache lookup
# %%
from cyberbattle._env import cyberbattle_env
import gym
import logging
import sys
import cyberbattle.agents.baseline.plotting as p
import cyberbattle.agents.baseline.agent_wrapper as w
from cyberbattle.agents.baseline.agent_wrapper import Verbosity
import cyberbattle.agents.baseline.learner as learner
import cyberbattle.agents.baseline.agent_randomcredlookup as rca
import cyberbattle.agents.baseline.agent_dql as dqla
import cyberbattle.agents.baseline.agent_tabularqlearning as tqa
import importlib
importlib.reload(tqa)
importlib.reload(dqla)
importlib.reload(learner)
importlib.reload(cyberbattle_env)
logging.basicConfig(stream=sys.stdout, level=logging.ERROR, format="%(levelname)s: %(message)s")
# %% [markdown]
# # Gym environment: chain-like network
# See Jupyer notebook `chainenetwork-random` for an introduction to this network environment.
cyberbattlechain_10 = gym.make(
'CyberBattleChain-v0',
size=10,
attacker_goal=cyberbattle_env.AttackerGoal(reward=4000, own_atleast_percent=1.0)
)
cyberbattlechain_10.environment
# training_env.environment.plot_environment_graph()
cyberbattlechain_10.environment.network.nodes
cyberbattlechain_10.action_space
cyberbattlechain_10.action_space.sample()
cyberbattlechain_10.observation_space.sample()
o0 = cyberbattlechain_10.reset()
o_test, r, d, i = cyberbattlechain_10.step(cyberbattlechain_10.sample_valid_action())
o0 = cyberbattlechain_10.reset()
o0.keys()
# %%
ep = w.EnvironmentBounds.of_identifiers(
maximum_node_count=22,
maximum_total_credentials=22,
identifiers=cyberbattlechain_10.identifiers
)
print(f"port_count = {ep.port_count}, property_count = {ep.property_count}")
fe_example = w.RavelEncoding(ep, [w.Feature_active_node_properties(ep), w.Feature_discovered_node_count(ep)])
a = w.StateAugmentation(o0)
w.Feature_discovered_ports(ep).get(a, None)
fe_example.encode_at(a, 0)
iteration_count = 9000
training_episode_count = 50
eval_episode_count = 5
# %%
random_run = learner.epsilon_greedy_search(
cyberbattlechain_10,
ep,
learner=learner.RandomPolicy(),
episode_count=10, # training_episode_count,
iteration_count=iteration_count,
epsilon=1.0,
render=False,
verbosity=Verbosity.Quiet,
title="Random"
)
# %%
credlookup_run = learner.epsilon_greedy_search(
cyberbattlechain_10,
ep,
learner=rca.CredentialCacheExploiter(),
episode_count=10,
iteration_count=iteration_count,
epsilon=0.90,
render=False,
epsilon_exponential_decay=10000,
epsilon_minimum=0.10,
verbosity=Verbosity.Quiet,
title="Credential lookups (ϵ-greedy)"
)
# %%
tabularq_run = learner.epsilon_greedy_search(
cyberbattlechain_10,
ep,
learner=tqa.QTabularLearner(
ep,
gamma=0.10, learning_rate=0.90, exploit_percentile=100),
render=False,
episode_count=training_episode_count,
iteration_count=iteration_count,
epsilon=0.90,
epsilon_exponential_decay=10000,
epsilon_minimum=0.10,
verbosity=Verbosity.Quiet,
title="Tabular Q-learning"
)
# %%
tabularq_exploit_run = learner.epsilon_greedy_search(
cyberbattlechain_10,
ep,
learner=tqa.QTabularLearner(
ep,
trained=tabularq_run['learner'],
gamma=0.0,
learning_rate=0.0,
exploit_percentile=90),
episode_count=eval_episode_count,
iteration_count=iteration_count,
epsilon=0.0,
render=False,
verbosity=Verbosity.Quiet,
title="Exploiting Q-matrix"
)
# %%
dql_run = learner.epsilon_greedy_search(
cyberbattle_gym_env=cyberbattlechain_10,
environment_properties=ep,
learner=dqla.DeepQLearnerPolicy(
ep=ep,
gamma=0.015,
replay_memory_size=10000,
target_update=10,
batch_size=512,
learning_rate=0.01
),
episode_count=15,
iteration_count=iteration_count,
epsilon=0.90,
render=False,
epsilon_exponential_decay=5000,
epsilon_minimum=0.10,
verbosity=Verbosity.Quiet,
title="DQL"
)
# %%
dql_exploit_run = learner.epsilon_greedy_search(
cyberbattlechain_10,
ep,
learner=dql_run['learner'],
episode_count=50,
iteration_count=iteration_count,
epsilon=0.00,
epsilon_minimum=0.00,
render=False,
verbosity=Verbosity.Quiet,
title="Exploiting DQL"
)
# %%
all_runs = [
random_run,
credlookup_run,
tabularq_run,
tabularq_exploit_run,
dql_run,
dql_exploit_run
]
p.plot_episodes_length(all_runs)
p.plot_averaged_cummulative_rewards(
title=f'Agent Benchmark\n'
f'max_nodes:{ep.maximum_node_count}\n',
all_runs=all_runs)
# %%
contenders = [
credlookup_run,
tabularq_run,
dql_run,
dql_exploit_run
]
p.plot_episodes_length(contenders)
p.plot_averaged_cummulative_rewards(
title=f'Agent Benchmark top contenders\n'
f'max_nodes:{ep.maximum_node_count}\n',
all_runs=contenders)
# %%
for r in contenders:
p.plot_all_episodes(r)
# %%