-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCCFC_Cifar10.py
278 lines (238 loc) · 12.1 KB
/
CCFC_Cifar10.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
import copy
import torch
import argparse
from tqdm import tqdm
from os import path, makedirs
import os
import numpy as np
import torchvision
from sklearn.cluster import KMeans
from modules import transform, resnet, network, contrastive_loss, sam
from utils import yaml_config_hook
from torch.utils import data
from torch.utils.data import DataLoader
from torchvision.datasets import ImageFolder
from opacus.validators import ModuleValidator
from evaluation import evaluation
from opacus.accountants.utils import get_noise_multiplier
import pickle
import PIL
import math
from collections import defaultdict
from sklearn.cluster import SpectralClustering
from sklearn.metrics.pairwise import euclidean_distances
from utils import SimSiam, clustering, centeral_clustering_by_cosine_similarity, centeral_get_global_centroids, Aggregator, centeral_pretrain, setup_seed, pretrain, asymmetric_loss, symmetric_loss, get_global_centroids, clustering_by_cosine_similarity
class Cifar10Dataset(torch.utils.data.Dataset):
def __init__(self, samples, labels, transform):
# 初始化文件路径或文件名列表。
# 初始化该类的一些基本参数。
self.samples = samples
self.labels = labels
self.transform = transform
def __len__(self):
# 返回数据集的总大小
return self.samples.shape[0]
def __getitem__(self, index):
return (self.transform(self.samples[index]), self.transform(self.samples[index]), index)
class Cifar10DatasetTest(torch.utils.data.Dataset):
def __init__(self, samples, labels, transform):
# 初始化文件路径或文件名列表。
# 初始化该类的一些基本参数。
self.samples = samples
self.labels = labels
self.transform = transform
def __len__(self):
# 返回数据集的总大小
return self.samples.shape[0]
def __getitem__(self, index):
return (self.transform(self.samples[index]), self.labels[index])
class Cifar10DatasetTrain(torch.utils.data.Dataset):
def __init__(self, samples, labels, transform):
# 初始化文件路径或文件名列表。
# 初始化该类的一些基本参数。
self.samples = samples
self.labels = labels
self.transform = transform
def __len__(self):
# 返回数据集的总大小
return self.samples.shape[0]
def __getitem__(self, index):
return self.transform(self.samples[index])
def getModelUpdate(gradDict, netcopy, net):
net_para = net.state_dict()
for name in net_para:
gradDict[name] = (netcopy[name].data - net_para[name].data).clone()
def createclientDataIndex(samplePath):
clientDataIndex={}
with open(samplePath, "rb") as f:
Sample=pickle.load(f)
samplePerClient = len(Sample)//args.n_clients
index=torch.tensor(list(range(len(Sample))))
for c in range(args.n_clients):
if c==args.n_clients-1:
clientDataIndex[c] = torch.tensor(index[c*samplePerClient:])
else:
clientDataIndex[c] = torch.tensor(index[c*samplePerClient:(c+1)*samplePerClient])
return clientDataIndex
if __name__ == "__main__":
import warnings
warnings.filterwarnings("ignore")
device= torch.device("cuda:1")
print(device)
parser = argparse.ArgumentParser('CCFC')
parser.add_argument('--data_root', default= './datasets',type=str, help='path to dataset directory')
parser.add_argument('--exp_dir', default='./save/CCFC', type=str, help='path to experiment directory')
parser.add_argument('--trial', type=str, default='v4', help='trial id')
parser.add_argument('--seed', type=int, default = 66, help='random seed')
parser.add_argument('--proj_hidden_dim', default = 512, type=int, help='feature dimension')
parser.add_argument('--num_proj_layers', type=int, default=2, help='number of projection layer')
parser.add_argument('--latent_dim', default = 256, type=int, help='feature dimension')
parser.add_argument('--pre_hidden_dim', default = 64, type=int, help='feature dimension')
parser.add_argument('--k', type = int, default = 10, help='the number of clusters')
parser.add_argument('--lbd', type=float, default = 0.005, help='trade-off hyper')
parser.add_argument('--p', type=float, default = 0., help='non-iid level')
parser.add_argument('--lr', type=float, default = 0.0005, help='learning rate')
parser.add_argument('--batch_size', type=int, default = 300, help='batch_size')
parser.add_argument('--num_workers', type=int, default = 6, help='num of workers to use')
parser.add_argument('--mini_bs', type=int, default = 150, help='mini_bs')
parser.add_argument('--image_size', type=int, default = 224, help='image_size')
parser.add_argument('--test_image_size', type=int, default = 256, help='test_image_size')
parser.add_argument('--n_clients', type=int, default = 200, help='n_clients')
parser.add_argument('--resnet', type=str, default = "ResNet18", help='resnet')
parser.add_argument('--global_lr', type=float, default = 1, help='global_lr')
parser.add_argument('--sample_ratio', type=float, default = 0.05, help='global_lr')
args = parser.parse_args()
setup_seed(args.seed)
print(args)
torch.manual_seed(args.seed)
torch.cuda.manual_seed_all(args.seed)
torch.cuda.manual_seed(args.seed)
np.random.seed(args.seed)
trial_dir = path.join(args.exp_dir, args.trial)
if not path.exists(trial_dir):
makedirs(trial_dir)
with open("./datasets/cifar10/Sample", "rb") as f:
Sample = pickle.load(f)
with open("./datasets/cifar10/Label", "rb") as f:
Label = pickle.load(f)
ground_truth_all = Label
n = len(Sample)
clientDataIndex = createclientDataIndex("./datasets/cifar10/Sample")
s = 0.5
mean=[0.4914, 0.4822, 0.4465]
std=[0.2023, 0.1994, 0.2010]
# transformation = [
# torchvision.transforms.ToPILImage(),
# torchvision.transforms.RandomResizedCrop(size=args.image_size, interpolation=PIL.Image.BICUBIC, scale=(0.2, 1.0)),
# torchvision.transforms.RandomHorizontalFlip(),
# torchvision.transforms.RandomApply([torchvision.transforms.ColorJitter(0.8 * s, 0.8 * s, 0.4 * s, 0.2 * s)], p=0.8),
# torchvision.transforms.RandomGrayscale(p=0.2),
# ]
# transformation.append(torchvision.transforms.ToTensor())
# transformation.append(torchvision.transforms.Normalize(mean=mean, std=std))
# transformation = torchvision.transforms.Compose(transformation)
# dataset_aug = Cifar10Dataset(Sample, Label, transformation)
# aug_dataloader = DataLoader(
# dataset_aug,
# batch_size=args.batch_size,
# shuffle=False,
# drop_last=True,
# num_workers=args.num_workers,
# pin_memory=True,
# )
transformation_test = [
torchvision.transforms.ToPILImage(),
torchvision.transforms.Resize(
(args.test_image_size, args.test_image_size), interpolation=PIL.Image.BICUBIC
),
torchvision.transforms.CenterCrop(args.image_size),
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize(mean=mean, std=std)
]
transformation_test = torchvision.transforms.Compose(transformation_test)
dataset_test = Cifar10DatasetTest(Sample, Label, transformation_test)
test_loader = torch.utils.data.DataLoader(
dataset_test,
batch_size=args.batch_size,
shuffle=False,
drop_last=False,
num_workers=args.num_workers,
)
dataset_train = Cifar10DatasetTrain(Sample, Label, transformation_test)
train_loader = torch.utils.data.DataLoader(
dataset_train,
batch_size=args.batch_size,
shuffle=False,
drop_last=False,
num_workers=args.num_workers,
)
Nets = {}
Nets, agg, pseudo_labels = pretrain(Nets, args, Sample, Label, clientDataIndex, test_loader, ground_truth_all, n, trial_dir, device)
# Nets, pseudo_labels = centeral_pretrain(Nets, args, aug_dataloader, test_loader, ground_truth_all, n, trial_dir, device)
# agg = Aggregator(device, args)
# loadpath="save/CCFC/v2/model_pretrain_0_59.pt"
# checkpoint = torch.load(loadpath, map_location=device)
# agg.global_model.load_state_dict(checkpoint)
# Nets[f'model'] = copy.deepcopy(agg.global_model)
# Nets[f'model'].train()
# Nets[f'optim'] = torch.optim.Adam(Nets[f'model'].parameters(), lr = args.lr)
# Nets[f'optim'].zero_grad()
# global_centroids = get_global_centroids(args, test_loader, agg.global_model, device)
# pseudo_labels = clustering_by_cosine_similarity(args, test_loader, agg.global_model, global_centroids, ground_truth_all.numpy(), device)
# print("pseudo_labels",len(pseudo_labels))
global_centroids = centeral_get_global_centroids(args, test_loader, agg.global_model, device)
pseudo_labels = centeral_clustering_by_cosine_similarity(args, test_loader, agg.global_model, global_centroids, ground_truth_all.numpy(), device)
print("pseudo_labels",len(pseudo_labels))
print(f'training on: {device}')
for epoch in range(200):
# agg.global_model.eval()
global_w = agg.global_model.state_dict()
train_loss=0
for batch_idx, x in enumerate(train_loader):
Nets[f'model'].load_state_dict(copy.deepcopy(global_w))
Nets[f'model'].train()
true_epoch=0
lossPerUser=0
modelUpdateDict={}
for local_epoch in range(3):
batch_num = int(args.batch_size/args.mini_bs)
batch_index=np.array(range(args.batch_size))
np.random.shuffle(batch_index)
for j in range(batch_num):
true_epoch += 1
batch_records = batch_index[j*args.mini_bs:(j+1)*args.mini_bs]
x_batch=x[batch_records].to(device)
z, p = Nets[f'model'](x_batch)
with torch.no_grad():
_, p_g = agg.global_model(x_batch)
count = 0
loss_cluster = 0
labels = pseudo_labels[clientDataIndex[batch_idx][batch_records]]
for j in torch.unique(labels):
idx_j = labels == j
if sum(idx_j) > 1:
count += 1
loss_cluster += symmetric_loss(p[idx_j], z[idx_j])
loss_cluster /= count
loss_model = asymmetric_loss(p, p_g)
loss = loss_cluster + args.lbd * loss_model
lossPerUser+=loss.item()
loss.backward()
Nets[f'optim'].step()
Nets[f'optim'].zero_grad()
print('Round: ', epoch, "User:", batch_idx, 'Train Loss: %.3f' % (lossPerUser/true_epoch))
getModelUpdate(modelUpdateDict, agg.global_model.state_dict(), Nets[f'model']) # modelcopy - model
train_loss+=lossPerUser
agg.collect(modelUpdateDict)
print('Round: ', epoch, 'Train Loss: %.3f' % (train_loss/(true_epoch*len(Label)/args.batch_size)))
agg.update()
global_centroids = get_global_centroids(args, test_loader, agg.global_model, device)
pseudo_labels = clustering_by_cosine_similarity(args, test_loader, agg.global_model, global_centroids, ground_truth_all.numpy(), device)
# global_centroids = get_global_centroids(args, test_loader, Nets[f'model'], device)
# pseudo_labels = clustering_by_cosine_similarity(args, test_loader, Nets[f'model'], global_centroids, ground_truth_all.numpy(), device)
if (epoch+1)%10==0:
save_path = path.join(trial_dir, f"model_train_{int(args.p / 0.25)}_{epoch}.pt")
torch.save(agg.global_model.state_dict(), save_path)
# if (epoch+1)%10==0:
# save_path = path.join(trial_dir, f"model_train_{int(args.p / 0.25)}_{epoch}.pt")
# torch.save( Nets[f'model'].state_dict(), save_path)