-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlunwentest_cifar10_noiid_bn.log
4502 lines (4502 loc) · 174 KB
/
lunwentest_cifar10_noiid_bn.log
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
nohup: ignoring input
cuda:2
Namespace(batch_size=1500, bn_sparsity=0.9, classes_per_user=4, clip_bound=1.8, clipping_style='all-layer', cluster_project_lr=0.05, cluster_temperature=1.0, dataset='CIFAR-10', dataset_dir='/home/chenyannan/fast-differential-privacy-main/examples/image_classification/data', downsample_lr=0.04, epochs=50, epsilon=8, feature_dim=128, global_lr=1.06, image_size=224, instance_project_lr=0.04, instance_temperature=0.5, kl_threshold=0.7, learning_rate=0.0003, linear_sparsity=0.75, local_epoch=3, loss_KL=0.5, mini_bs=125, miu=0.5, model_path='save/Cifar-10-DPFL-ResNet18-noiid-classes_per_user7-num_class7-noper', momentum=0.3, n_clients=40, num_class=4, r_conv=6, r_proj=16, reload=False, resnet='ResNet18_lora', resnet_lr=0.1, sample_ratio=1, seed=17, smooth_K=6, smooth_loss_radius=2, smooth_step=0, start_epoch=0, test_image_size=256, trans_lr=0.05, weight_decay=1e-05, workers=8)
len label: 60000
tensor([1, 1, 1, ..., 2, 2, 2]) 1500
resnet.bn1 BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) GroupNorm(32, 64, eps=1e-05, affine=True)
resnet.layer1.0.bn1 BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) GroupNorm(32, 64, eps=1e-05, affine=True)
resnet.layer1.0.bn2 BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) GroupNorm(32, 64, eps=1e-05, affine=True)
resnet.layer1.1.bn1 BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) GroupNorm(32, 64, eps=1e-05, affine=True)
resnet.layer1.1.bn2 BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) GroupNorm(32, 64, eps=1e-05, affine=True)
resnet.layer2.0.bn1 BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) GroupNorm(32, 128, eps=1e-05, affine=True)
resnet.layer2.0.bn2 BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) GroupNorm(32, 128, eps=1e-05, affine=True)
resnet.layer2.0.downsample.1 BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) GroupNorm(32, 128, eps=1e-05, affine=True)
resnet.layer2.1.bn1 BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) GroupNorm(32, 128, eps=1e-05, affine=True)
resnet.layer2.1.bn2 BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) GroupNorm(32, 128, eps=1e-05, affine=True)
resnet.layer3.0.bn1 BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) GroupNorm(32, 256, eps=1e-05, affine=True)
resnet.layer3.0.bn2 BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) GroupNorm(32, 256, eps=1e-05, affine=True)
resnet.layer3.0.downsample.1 BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) GroupNorm(32, 256, eps=1e-05, affine=True)
resnet.layer3.1.bn1 BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) GroupNorm(32, 256, eps=1e-05, affine=True)
resnet.layer3.1.bn2 BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) GroupNorm(32, 256, eps=1e-05, affine=True)
resnet.layer4.0.bn1 BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) GroupNorm(32, 512, eps=1e-05, affine=True)
resnet.layer4.0.bn2 BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) GroupNorm(32, 512, eps=1e-05, affine=True)
resnet.layer4.0.downsample.1 BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) GroupNorm(32, 512, eps=1e-05, affine=True)
resnet.layer4.1.bn1 BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) GroupNorm(32, 512, eps=1e-05, affine=True)
resnet.layer4.1.bn2 BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) GroupNorm(32, 512, eps=1e-05, affine=True)
save/Img-10-pretrain-transform/checkpoint_532.tar
resnet.bn1 BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) GroupNorm(32, 64, eps=1e-05, affine=True)
resnet.layer1.0.bn1 BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) GroupNorm(32, 64, eps=1e-05, affine=True)
resnet.layer1.0.bn2 BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) GroupNorm(32, 64, eps=1e-05, affine=True)
resnet.layer1.1.bn1 BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) GroupNorm(32, 64, eps=1e-05, affine=True)
resnet.layer1.1.bn2 BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) GroupNorm(32, 64, eps=1e-05, affine=True)
resnet.layer2.0.bn1 BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) GroupNorm(32, 128, eps=1e-05, affine=True)
resnet.layer2.0.bn2 BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) GroupNorm(32, 128, eps=1e-05, affine=True)
resnet.layer2.0.downsample.1 BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) GroupNorm(32, 128, eps=1e-05, affine=True)
resnet.layer2.1.bn1 BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) GroupNorm(32, 128, eps=1e-05, affine=True)
resnet.layer2.1.bn2 BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) GroupNorm(32, 128, eps=1e-05, affine=True)
resnet.layer3.0.bn1 BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) GroupNorm(32, 256, eps=1e-05, affine=True)
resnet.layer3.0.bn2 BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) GroupNorm(32, 256, eps=1e-05, affine=True)
resnet.layer3.0.downsample.1 BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) GroupNorm(32, 256, eps=1e-05, affine=True)
resnet.layer3.1.bn1 BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) GroupNorm(32, 256, eps=1e-05, affine=True)
resnet.layer3.1.bn2 BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) GroupNorm(32, 256, eps=1e-05, affine=True)
resnet.layer4.0.bn1 BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) GroupNorm(32, 512, eps=1e-05, affine=True)
resnet.layer4.0.bn2 BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) GroupNorm(32, 512, eps=1e-05, affine=True)
resnet.layer4.0.downsample.1 BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) GroupNorm(32, 512, eps=1e-05, affine=True)
resnet.layer4.1.bn1 BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) GroupNorm(32, 512, eps=1e-05, affine=True)
resnet.layer4.1.bn2 BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) GroupNorm(32, 512, eps=1e-05, affine=True)
resnet.conv1.weight 9408 torch.Size([64, 3, 7, 7])
resnet.conv1.lora_A 882 torch.Size([42, 21])
resnet.conv1.lora_B 18816 torch.Size([448, 42])
resnet.bn1.weight 64 torch.Size([64])
resnet.bn1.bias 64 torch.Size([64])
resnet.layer1.0.conv1.weight 36864 torch.Size([64, 64, 3, 3])
resnet.layer1.0.conv1.lora_A 3456 torch.Size([18, 192])
resnet.layer1.0.conv1.lora_B 3456 torch.Size([192, 18])
resnet.layer1.0.bn1.weight 64 torch.Size([64])
resnet.layer1.0.bn1.bias 64 torch.Size([64])
resnet.layer1.0.conv2.weight 36864 torch.Size([64, 64, 3, 3])
resnet.layer1.0.conv2.lora_A 3456 torch.Size([18, 192])
resnet.layer1.0.conv2.lora_B 3456 torch.Size([192, 18])
resnet.layer1.0.bn2.weight 64 torch.Size([64])
resnet.layer1.0.bn2.bias 64 torch.Size([64])
resnet.layer1.1.conv1.weight 36864 torch.Size([64, 64, 3, 3])
resnet.layer1.1.bn1.weight 64 torch.Size([64])
resnet.layer1.1.bn1.bias 64 torch.Size([64])
resnet.layer1.1.conv2.weight 36864 torch.Size([64, 64, 3, 3])
resnet.layer1.1.bn2.weight 64 torch.Size([64])
resnet.layer1.1.bn2.bias 64 torch.Size([64])
resnet.layer2.0.conv1.weight 73728 torch.Size([128, 64, 3, 3])
resnet.layer2.0.conv1.lora_A 3456 torch.Size([18, 192])
resnet.layer2.0.conv1.lora_B 6912 torch.Size([384, 18])
resnet.layer2.0.bn1.weight 128 torch.Size([128])
resnet.layer2.0.bn1.bias 128 torch.Size([128])
resnet.layer2.0.conv2.weight 147456 torch.Size([128, 128, 3, 3])
resnet.layer2.0.conv2.lora_A 6912 torch.Size([18, 384])
resnet.layer2.0.conv2.lora_B 6912 torch.Size([384, 18])
resnet.layer2.0.bn2.weight 128 torch.Size([128])
resnet.layer2.0.bn2.bias 128 torch.Size([128])
resnet.layer2.0.downsample.0.weight 8192 torch.Size([128, 64, 1, 1])
resnet.layer2.0.downsample.0.lora_A 2304 torch.Size([36, 64])
resnet.layer2.0.downsample.0.lora_B 4608 torch.Size([128, 36])
resnet.layer2.0.downsample.1.weight 128 torch.Size([128])
resnet.layer2.0.downsample.1.bias 128 torch.Size([128])
resnet.layer2.1.conv1.weight 147456 torch.Size([128, 128, 3, 3])
resnet.layer2.1.bn1.weight 128 torch.Size([128])
resnet.layer2.1.bn1.bias 128 torch.Size([128])
resnet.layer2.1.conv2.weight 147456 torch.Size([128, 128, 3, 3])
resnet.layer2.1.bn2.weight 128 torch.Size([128])
resnet.layer2.1.bn2.bias 128 torch.Size([128])
resnet.layer3.0.conv1.weight 294912 torch.Size([256, 128, 3, 3])
resnet.layer3.0.conv1.lora_A 6912 torch.Size([18, 384])
resnet.layer3.0.conv1.lora_B 13824 torch.Size([768, 18])
resnet.layer3.0.bn1.weight 256 torch.Size([256])
resnet.layer3.0.bn1.bias 256 torch.Size([256])
resnet.layer3.0.conv2.weight 589824 torch.Size([256, 256, 3, 3])
resnet.layer3.0.conv2.lora_A 13824 torch.Size([18, 768])
resnet.layer3.0.conv2.lora_B 13824 torch.Size([768, 18])
resnet.layer3.0.bn2.weight 256 torch.Size([256])
resnet.layer3.0.bn2.bias 256 torch.Size([256])
resnet.layer3.0.downsample.0.weight 32768 torch.Size([256, 128, 1, 1])
resnet.layer3.0.downsample.0.lora_A 4608 torch.Size([36, 128])
resnet.layer3.0.downsample.0.lora_B 9216 torch.Size([256, 36])
resnet.layer3.0.downsample.1.weight 256 torch.Size([256])
resnet.layer3.0.downsample.1.bias 256 torch.Size([256])
resnet.layer3.1.conv1.weight 589824 torch.Size([256, 256, 3, 3])
resnet.layer3.1.conv1.lora_A 13824 torch.Size([18, 768])
resnet.layer3.1.conv1.lora_B 13824 torch.Size([768, 18])
resnet.layer3.1.bn1.weight 256 torch.Size([256])
resnet.layer3.1.bn1.bias 256 torch.Size([256])
resnet.layer3.1.conv2.weight 589824 torch.Size([256, 256, 3, 3])
resnet.layer3.1.conv2.lora_A 13824 torch.Size([18, 768])
resnet.layer3.1.conv2.lora_B 13824 torch.Size([768, 18])
resnet.layer3.1.bn2.weight 256 torch.Size([256])
resnet.layer3.1.bn2.bias 256 torch.Size([256])
resnet.layer4.0.conv1.weight 1179648 torch.Size([512, 256, 3, 3])
resnet.layer4.0.conv1.lora_A 13824 torch.Size([18, 768])
resnet.layer4.0.conv1.lora_B 27648 torch.Size([1536, 18])
resnet.layer4.0.bn1.weight 512 torch.Size([512])
resnet.layer4.0.bn1.bias 512 torch.Size([512])
resnet.layer4.0.conv2.weight 2359296 torch.Size([512, 512, 3, 3])
resnet.layer4.0.conv2.lora_A 27648 torch.Size([18, 1536])
resnet.layer4.0.conv2.lora_B 27648 torch.Size([1536, 18])
resnet.layer4.0.bn2.weight 512 torch.Size([512])
resnet.layer4.0.bn2.bias 512 torch.Size([512])
resnet.layer4.0.downsample.0.weight 131072 torch.Size([512, 256, 1, 1])
resnet.layer4.0.downsample.0.lora_A 9216 torch.Size([36, 256])
resnet.layer4.0.downsample.0.lora_B 18432 torch.Size([512, 36])
resnet.layer4.0.downsample.1.weight 512 torch.Size([512])
resnet.layer4.0.downsample.1.bias 512 torch.Size([512])
resnet.layer4.1.conv1.weight 2359296 torch.Size([512, 512, 3, 3])
resnet.layer4.1.conv1.lora_A 27648 torch.Size([18, 1536])
resnet.layer4.1.conv1.lora_B 27648 torch.Size([1536, 18])
resnet.layer4.1.bn1.weight 512 torch.Size([512])
resnet.layer4.1.bn1.bias 512 torch.Size([512])
resnet.layer4.1.conv2.weight 2359296 torch.Size([512, 512, 3, 3])
resnet.layer4.1.conv2.lora_A 27648 torch.Size([18, 1536])
resnet.layer4.1.conv2.lora_B 27648 torch.Size([1536, 18])
resnet.layer4.1.bn2.weight 512 torch.Size([512])
resnet.layer4.1.bn2.bias 512 torch.Size([512])
instance_projector.0.weight 262144 torch.Size([512, 512])
instance_projector.0.bias 512 torch.Size([512])
instance_projector.2.weight 65536 torch.Size([128, 512])
instance_projector.2.bias 128 torch.Size([128])
cluster_projector2.0.weight 262144 torch.Size([512, 512])
cluster_projector2.0.bias 512 torch.Size([512])
cluster_projector2.2.weight 2048 torch.Size([4, 512])
cluster_projector2.2.bias 4 torch.Size([4])
sigma: 3.67919921875
Number of total parameters: 12186678
Number of trainable p arameters: 1019766
### Creating features from model ###
########### begin kmeans ##########
Global NMI = 0.2203 ARI = 0.0380 F = 0.3022 ACC = 0.2461
Norm: tensor(3.5118, device='cuda:2')
Round: 0 User: 0 Train Loss: 6.093
Norm: tensor(3.4501, device='cuda:2')
Round: 0 User: 1 Train Loss: 6.147
Norm: tensor(3.5755, device='cuda:2')
Round: 0 User: 2 Train Loss: 6.188
Norm: tensor(3.3879, device='cuda:2')
Round: 0 User: 3 Train Loss: 6.287
Norm: tensor(3.2902, device='cuda:2')
Round: 0 User: 4 Train Loss: 6.211
Norm: tensor(3.6165, device='cuda:2')
Round: 0 User: 5 Train Loss: 6.293
Norm: tensor(3.4046, device='cuda:2')
Round: 0 User: 6 Train Loss: 6.163
Norm: tensor(3.5357, device='cuda:2')
Round: 0 User: 7 Train Loss: 6.048
Norm: tensor(3.4970, device='cuda:2')
Round: 0 User: 8 Train Loss: 6.202
Norm: tensor(3.5176, device='cuda:2')
Round: 0 User: 9 Train Loss: 6.313
Norm: tensor(3.5443, device='cuda:2')
Round: 0 User: 10 Train Loss: 6.084
Norm: tensor(3.4115, device='cuda:2')
Round: 0 User: 11 Train Loss: 6.169
Norm: tensor(3.3562, device='cuda:2')
Round: 0 User: 12 Train Loss: 6.261
Norm: tensor(3.3612, device='cuda:2')
Round: 0 User: 13 Train Loss: 6.226
Norm: tensor(3.6909, device='cuda:2')
Round: 0 User: 14 Train Loss: 6.165
Norm: tensor(3.5915, device='cuda:2')
Round: 0 User: 15 Train Loss: 6.055
Norm: tensor(3.5084, device='cuda:2')
Round: 0 User: 16 Train Loss: 6.493
Norm: tensor(3.5398, device='cuda:2')
Round: 0 User: 17 Train Loss: 6.291
Norm: tensor(3.6291, device='cuda:2')
Round: 0 User: 18 Train Loss: 6.393
Norm: tensor(3.5968, device='cuda:2')
Round: 0 User: 19 Train Loss: 6.109
Norm: tensor(3.5333, device='cuda:2')
Round: 0 User: 20 Train Loss: 6.118
Norm: tensor(3.5060, device='cuda:2')
Round: 0 User: 21 Train Loss: 6.319
Norm: tensor(3.4882, device='cuda:2')
Round: 0 User: 22 Train Loss: 6.295
Norm: tensor(3.4820, device='cuda:2')
Round: 0 User: 23 Train Loss: 6.142
Norm: tensor(3.5622, device='cuda:2')
Round: 0 User: 24 Train Loss: 6.075
Norm: tensor(3.4274, device='cuda:2')
Round: 0 User: 25 Train Loss: 6.091
Norm: tensor(3.4794, device='cuda:2')
Round: 0 User: 26 Train Loss: 6.215
Norm: tensor(3.5607, device='cuda:2')
Round: 0 User: 27 Train Loss: 6.231
Norm: tensor(3.4474, device='cuda:2')
Round: 0 User: 28 Train Loss: 6.201
Norm: tensor(3.5789, device='cuda:2')
Round: 0 User: 29 Train Loss: 6.239
Norm: tensor(3.4393, device='cuda:2')
Round: 0 User: 30 Train Loss: 6.292
Norm: tensor(3.3223, device='cuda:2')
Round: 0 User: 31 Train Loss: 6.131
Norm: tensor(3.4826, device='cuda:2')
Round: 0 User: 32 Train Loss: 6.153
Norm: tensor(3.4982, device='cuda:2')
Round: 0 User: 33 Train Loss: 6.106
Norm: tensor(3.4343, device='cuda:2')
Round: 0 User: 34 Train Loss: 6.123
Norm: tensor(3.4602, device='cuda:2')
Round: 0 User: 35 Train Loss: 6.086
Norm: tensor(3.5860, device='cuda:2')
Round: 0 User: 36 Train Loss: 6.199
Norm: tensor(3.4558, device='cuda:2')
Round: 0 User: 37 Train Loss: 6.291
Norm: tensor(3.6173, device='cuda:2')
Round: 0 User: 38 Train Loss: 6.162
Norm: tensor(3.4421, device='cuda:2')
Round: 0 User: 39 Train Loss: 6.020
clip_bound 1.6
count 40
updated norm: tensor(1.2746, device='cuda:2')
*********Round: 0 Train Loss: 6.192
### Creating features from model ###
########### begin kmeans ##########
Global NMI = 0.3282 ARI = 0.2292 F = 0.3386 ACC = 0.4401
Norm: tensor(2.1225, device='cuda:2')
Round: 1 User: 0 Train Loss: 5.803
Norm: tensor(2.1992, device='cuda:2')
Round: 1 User: 1 Train Loss: 5.819
Norm: tensor(2.5349, device='cuda:2')
Round: 1 User: 2 Train Loss: 5.793
Norm: tensor(2.2585, device='cuda:2')
Round: 1 User: 3 Train Loss: 5.951
Norm: tensor(2.2143, device='cuda:2')
Round: 1 User: 4 Train Loss: 5.897
Norm: tensor(2.5128, device='cuda:2')
Round: 1 User: 5 Train Loss: 5.901
Norm: tensor(2.1586, device='cuda:2')
Round: 1 User: 6 Train Loss: 5.861
Norm: tensor(2.8962, device='cuda:2')
Round: 1 User: 7 Train Loss: 5.792
Norm: tensor(2.2709, device='cuda:2')
Round: 1 User: 8 Train Loss: 5.899
Norm: tensor(2.2547, device='cuda:2')
Round: 1 User: 9 Train Loss: 5.976
Norm: tensor(2.0448, device='cuda:2')
Round: 1 User: 10 Train Loss: 5.867
Norm: tensor(2.3566, device='cuda:2')
Round: 1 User: 11 Train Loss: 5.875
Norm: tensor(2.4223, device='cuda:2')
Round: 1 User: 12 Train Loss: 5.934
Norm: tensor(2.4023, device='cuda:2')
Round: 1 User: 13 Train Loss: 5.888
Norm: tensor(2.1447, device='cuda:2')
Round: 1 User: 14 Train Loss: 5.724
Norm: tensor(2.0414, device='cuda:2')
Round: 1 User: 15 Train Loss: 5.803
Norm: tensor(2.6614, device='cuda:2')
Round: 1 User: 16 Train Loss: 6.160
Norm: tensor(2.2125, device='cuda:2')
Round: 1 User: 17 Train Loss: 5.835
Norm: tensor(2.4794, device='cuda:2')
Round: 1 User: 18 Train Loss: 5.874
Norm: tensor(2.3231, device='cuda:2')
Round: 1 User: 19 Train Loss: 5.792
Norm: tensor(1.9486, device='cuda:2')
Round: 1 User: 20 Train Loss: 5.751
Norm: tensor(2.1195, device='cuda:2')
Round: 1 User: 21 Train Loss: 5.891
Norm: tensor(2.3219, device='cuda:2')
Round: 1 User: 22 Train Loss: 5.985
Norm: tensor(2.7706, device='cuda:2')
Round: 1 User: 23 Train Loss: 5.845
Norm: tensor(2.3235, device='cuda:2')
Round: 1 User: 24 Train Loss: 5.795
Norm: tensor(2.2692, device='cuda:2')
Round: 1 User: 25 Train Loss: 5.767
Norm: tensor(2.4757, device='cuda:2')
Round: 1 User: 26 Train Loss: 5.915
Norm: tensor(2.1354, device='cuda:2')
Round: 1 User: 27 Train Loss: 5.875
Norm: tensor(2.4812, device='cuda:2')
Round: 1 User: 28 Train Loss: 5.968
Norm: tensor(2.3953, device='cuda:2')
Round: 1 User: 29 Train Loss: 5.994
Norm: tensor(2.0306, device='cuda:2')
Round: 1 User: 30 Train Loss: 5.938
Norm: tensor(2.6342, device='cuda:2')
Round: 1 User: 31 Train Loss: 5.894
Norm: tensor(2.6331, device='cuda:2')
Round: 1 User: 32 Train Loss: 5.932
Norm: tensor(2.2568, device='cuda:2')
Round: 1 User: 33 Train Loss: 5.814
Norm: tensor(2.3361, device='cuda:2')
Round: 1 User: 34 Train Loss: 5.813
Norm: tensor(2.0317, device='cuda:2')
Round: 1 User: 35 Train Loss: 5.836
Norm: tensor(2.6074, device='cuda:2')
Round: 1 User: 36 Train Loss: 5.900
Norm: tensor(2.3833, device='cuda:2')
Round: 1 User: 37 Train Loss: 6.045
Norm: tensor(2.3157, device='cuda:2')
Round: 1 User: 38 Train Loss: 5.904
Norm: tensor(2.1532, device='cuda:2')
Round: 1 User: 39 Train Loss: 5.804
clip_bound 1.6
count 40
updated norm: tensor(1.0321, device='cuda:2')
*********Round: 1 Train Loss: 5.878
### Creating features from model ###
########### begin kmeans ##########
Global NMI = 0.3956 ARI = 0.3179 F = 0.3982 ACC = 0.5310
Norm: tensor(1.5355, device='cuda:2')
Round: 2 User: 0 Train Loss: 5.750
Norm: tensor(1.3190, device='cuda:2')
Round: 2 User: 1 Train Loss: 5.694
Norm: tensor(1.8184, device='cuda:2')
Round: 2 User: 2 Train Loss: 5.810
Norm: tensor(1.5980, device='cuda:2')
Round: 2 User: 3 Train Loss: 5.865
Norm: tensor(1.5373, device='cuda:2')
Round: 2 User: 4 Train Loss: 5.801
Norm: tensor(1.6295, device='cuda:2')
Round: 2 User: 5 Train Loss: 5.755
Norm: tensor(1.3770, device='cuda:2')
Round: 2 User: 6 Train Loss: 5.792
Norm: tensor(1.8113, device='cuda:2')
Round: 2 User: 7 Train Loss: 5.707
Norm: tensor(1.5332, device='cuda:2')
Round: 2 User: 8 Train Loss: 5.788
Norm: tensor(1.5485, device='cuda:2')
Round: 2 User: 9 Train Loss: 5.816
Norm: tensor(1.3759, device='cuda:2')
Round: 2 User: 10 Train Loss: 5.689
Norm: tensor(1.5345, device='cuda:2')
Round: 2 User: 11 Train Loss: 5.788
Norm: tensor(1.6969, device='cuda:2')
Round: 2 User: 12 Train Loss: 5.874
Norm: tensor(1.3114, device='cuda:2')
Round: 2 User: 13 Train Loss: 5.731
Norm: tensor(1.4207, device='cuda:2')
Round: 2 User: 14 Train Loss: 5.687
Norm: tensor(1.3810, device='cuda:2')
Round: 2 User: 15 Train Loss: 5.689
Norm: tensor(2.0092, device='cuda:2')
Round: 2 User: 16 Train Loss: 6.059
Norm: tensor(1.4188, device='cuda:2')
Round: 2 User: 17 Train Loss: 5.748
Norm: tensor(1.5329, device='cuda:2')
Round: 2 User: 18 Train Loss: 5.793
Norm: tensor(1.3742, device='cuda:2')
Round: 2 User: 19 Train Loss: 5.725
Norm: tensor(1.1865, device='cuda:2')
Round: 2 User: 20 Train Loss: 5.653
Norm: tensor(1.6213, device='cuda:2')
Round: 2 User: 21 Train Loss: 5.835
Norm: tensor(1.5418, device='cuda:2')
Round: 2 User: 22 Train Loss: 5.830
Norm: tensor(1.6513, device='cuda:2')
Round: 2 User: 23 Train Loss: 5.773
Norm: tensor(1.7586, device='cuda:2')
Round: 2 User: 24 Train Loss: 5.887
Norm: tensor(1.7204, device='cuda:2')
Round: 2 User: 25 Train Loss: 5.805
Norm: tensor(1.5278, device='cuda:2')
Round: 2 User: 26 Train Loss: 5.747
Norm: tensor(1.3456, device='cuda:2')
Round: 2 User: 27 Train Loss: 5.770
Norm: tensor(1.7705, device='cuda:2')
Round: 2 User: 28 Train Loss: 5.766
Norm: tensor(1.5555, device='cuda:2')
Round: 2 User: 29 Train Loss: 5.826
Norm: tensor(1.7137, device='cuda:2')
Round: 2 User: 30 Train Loss: 5.905
Norm: tensor(1.3681, device='cuda:2')
Round: 2 User: 31 Train Loss: 5.726
Norm: tensor(1.9031, device='cuda:2')
Round: 2 User: 32 Train Loss: 5.820
Norm: tensor(1.4066, device='cuda:2')
Round: 2 User: 33 Train Loss: 5.700
Norm: tensor(1.2848, device='cuda:2')
Round: 2 User: 34 Train Loss: 5.687
Norm: tensor(1.2498, device='cuda:2')
Round: 2 User: 35 Train Loss: 5.654
Norm: tensor(1.7764, device='cuda:2')
Round: 2 User: 36 Train Loss: 5.751
Norm: tensor(1.7450, device='cuda:2')
Round: 2 User: 37 Train Loss: 5.872
Norm: tensor(1.5730, device='cuda:2')
Round: 2 User: 38 Train Loss: 5.775
Norm: tensor(1.5514, device='cuda:2')
Round: 2 User: 39 Train Loss: 5.766
clip_bound 1.350357961654663
count 40
updated norm: tensor(0.6746, device='cuda:2')
*********Round: 2 Train Loss: 5.778
### Creating features from model ###
########### begin kmeans ##########
Global NMI = 0.4266 ARI = 0.3194 F = 0.4115 ACC = 0.5298
Norm: tensor(1.5673, device='cuda:2')
Round: 3 User: 0 Train Loss: 5.743
Norm: tensor(1.1455, device='cuda:2')
Round: 3 User: 1 Train Loss: 5.643
Norm: tensor(1.7767, device='cuda:2')
Round: 3 User: 2 Train Loss: 5.689
Norm: tensor(1.5415, device='cuda:2')
Round: 3 User: 3 Train Loss: 5.753
Norm: tensor(1.4732, device='cuda:2')
Round: 3 User: 4 Train Loss: 5.766
Norm: tensor(1.4178, device='cuda:2')
Round: 3 User: 5 Train Loss: 5.727
Norm: tensor(1.3154, device='cuda:2')
Round: 3 User: 6 Train Loss: 5.783
Norm: tensor(1.7056, device='cuda:2')
Round: 3 User: 7 Train Loss: 5.762
Norm: tensor(1.2570, device='cuda:2')
Round: 3 User: 8 Train Loss: 5.726
Norm: tensor(1.5180, device='cuda:2')
Round: 3 User: 9 Train Loss: 5.846
Norm: tensor(1.0836, device='cuda:2')
Round: 3 User: 10 Train Loss: 5.621
Norm: tensor(1.4560, device='cuda:2')
Round: 3 User: 11 Train Loss: 5.789
Norm: tensor(1.6686, device='cuda:2')
Round: 3 User: 12 Train Loss: 5.796
Norm: tensor(1.1881, device='cuda:2')
Round: 3 User: 13 Train Loss: 5.694
Norm: tensor(1.1816, device='cuda:2')
Round: 3 User: 14 Train Loss: 5.602
Norm: tensor(1.1895, device='cuda:2')
Round: 3 User: 15 Train Loss: 5.641
Norm: tensor(1.6457, device='cuda:2')
Round: 3 User: 16 Train Loss: 5.900
Norm: tensor(1.3142, device='cuda:2')
Round: 3 User: 17 Train Loss: 5.790
Norm: tensor(1.2750, device='cuda:2')
Round: 3 User: 18 Train Loss: 5.716
Norm: tensor(1.3517, device='cuda:2')
Round: 3 User: 19 Train Loss: 5.739
Norm: tensor(1.0391, device='cuda:2')
Round: 3 User: 20 Train Loss: 5.564
Norm: tensor(1.2817, device='cuda:2')
Round: 3 User: 21 Train Loss: 5.696
Norm: tensor(1.2002, device='cuda:2')
Round: 3 User: 22 Train Loss: 5.763
Norm: tensor(1.5173, device='cuda:2')
Round: 3 User: 23 Train Loss: 5.672
Norm: tensor(1.3782, device='cuda:2')
Round: 3 User: 24 Train Loss: 5.760
Norm: tensor(1.7301, device='cuda:2')
Round: 3 User: 25 Train Loss: 5.865
Norm: tensor(1.3688, device='cuda:2')
Round: 3 User: 26 Train Loss: 5.686
Norm: tensor(1.2085, device='cuda:2')
Round: 3 User: 27 Train Loss: 5.742
Norm: tensor(1.2334, device='cuda:2')
Round: 3 User: 28 Train Loss: 5.684
Norm: tensor(1.4259, device='cuda:2')
Round: 3 User: 29 Train Loss: 5.757
Norm: tensor(1.4254, device='cuda:2')
Round: 3 User: 30 Train Loss: 5.849
Norm: tensor(1.3815, device='cuda:2')
Round: 3 User: 31 Train Loss: 5.697
Norm: tensor(1.7429, device='cuda:2')
Round: 3 User: 32 Train Loss: 5.803
Norm: tensor(1.3174, device='cuda:2')
Round: 3 User: 33 Train Loss: 5.644
Norm: tensor(1.1706, device='cuda:2')
Round: 3 User: 34 Train Loss: 5.657
Norm: tensor(1.1220, device='cuda:2')
Round: 3 User: 35 Train Loss: 5.698
Norm: tensor(1.5412, device='cuda:2')
Round: 3 User: 36 Train Loss: 5.723
Norm: tensor(1.4457, device='cuda:2')
Round: 3 User: 37 Train Loss: 5.780
Norm: tensor(1.7011, device='cuda:2')
Round: 3 User: 38 Train Loss: 5.859
Norm: tensor(1.6192, device='cuda:2')
Round: 3 User: 39 Train Loss: 5.776
clip_bound 1.1980539232492446
count 40
updated norm: tensor(0.4944, device='cuda:2')
*********Round: 3 Train Loss: 5.735
### Creating features from model ###
########### begin kmeans ##########
Global NMI = 0.4197 ARI = 0.3076 F = 0.4036 ACC = 0.5230
Norm: tensor(1.3123, device='cuda:2')
Round: 4 User: 0 Train Loss: 5.637
Norm: tensor(0.9848, device='cuda:2')
Round: 4 User: 1 Train Loss: 5.617
Norm: tensor(1.6233, device='cuda:2')
Round: 4 User: 2 Train Loss: 5.644
Norm: tensor(1.3684, device='cuda:2')
Round: 4 User: 3 Train Loss: 5.706
Norm: tensor(1.4258, device='cuda:2')
Round: 4 User: 4 Train Loss: 5.794
Norm: tensor(1.2269, device='cuda:2')
Round: 4 User: 5 Train Loss: 5.695
Norm: tensor(1.1815, device='cuda:2')
Round: 4 User: 6 Train Loss: 5.752
Norm: tensor(1.6539, device='cuda:2')
Round: 4 User: 7 Train Loss: 5.710
Norm: tensor(1.2145, device='cuda:2')
Round: 4 User: 8 Train Loss: 5.674
Norm: tensor(1.3171, device='cuda:2')
Round: 4 User: 9 Train Loss: 5.746
Norm: tensor(1.0463, device='cuda:2')
Round: 4 User: 10 Train Loss: 5.617
Norm: tensor(1.2224, device='cuda:2')
Round: 4 User: 11 Train Loss: 5.699
Norm: tensor(1.3843, device='cuda:2')
Round: 4 User: 12 Train Loss: 5.739
Norm: tensor(1.1603, device='cuda:2')
Round: 4 User: 13 Train Loss: 5.704
Norm: tensor(1.1488, device='cuda:2')
Round: 4 User: 14 Train Loss: 5.593
Norm: tensor(1.1103, device='cuda:2')
Round: 4 User: 15 Train Loss: 5.638
Norm: tensor(1.4645, device='cuda:2')
Round: 4 User: 16 Train Loss: 5.901
Norm: tensor(1.2477, device='cuda:2')
Round: 4 User: 17 Train Loss: 5.694
Norm: tensor(1.2639, device='cuda:2')
Round: 4 User: 18 Train Loss: 5.691
Norm: tensor(1.1975, device='cuda:2')
Round: 4 User: 19 Train Loss: 5.647
Norm: tensor(0.9533, device='cuda:2')
Round: 4 User: 20 Train Loss: 5.548
Norm: tensor(1.2871, device='cuda:2')
Round: 4 User: 21 Train Loss: 5.685
Norm: tensor(1.2922, device='cuda:2')
Round: 4 User: 22 Train Loss: 5.788
Norm: tensor(1.4067, device='cuda:2')
Round: 4 User: 23 Train Loss: 5.743
Norm: tensor(1.2494, device='cuda:2')
Round: 4 User: 24 Train Loss: 5.651
Norm: tensor(1.6201, device='cuda:2')
Round: 4 User: 25 Train Loss: 5.760
Norm: tensor(1.1975, device='cuda:2')
Round: 4 User: 26 Train Loss: 5.615
Norm: tensor(1.0110, device='cuda:2')
Round: 4 User: 27 Train Loss: 5.658
Norm: tensor(1.3239, device='cuda:2')
Round: 4 User: 28 Train Loss: 5.674
Norm: tensor(1.2616, device='cuda:2')
Round: 4 User: 29 Train Loss: 5.709
Norm: tensor(1.4436, device='cuda:2')
Round: 4 User: 30 Train Loss: 5.820
Norm: tensor(1.2468, device='cuda:2')
Round: 4 User: 31 Train Loss: 5.626
Norm: tensor(1.7065, device='cuda:2')
Round: 4 User: 32 Train Loss: 5.719
Norm: tensor(1.2398, device='cuda:2')
Round: 4 User: 33 Train Loss: 5.617
Norm: tensor(0.9710, device='cuda:2')
Round: 4 User: 34 Train Loss: 5.575
Norm: tensor(0.9805, device='cuda:2')
Round: 4 User: 35 Train Loss: 5.606
Norm: tensor(1.3080, device='cuda:2')
Round: 4 User: 36 Train Loss: 5.700
Norm: tensor(1.5069, device='cuda:2')
Round: 4 User: 37 Train Loss: 5.710
Norm: tensor(1.6524, device='cuda:2')
Round: 4 User: 38 Train Loss: 5.696
Norm: tensor(1.2299, device='cuda:2')
Round: 4 User: 39 Train Loss: 5.646
clip_bound 1.0860724493861198
count 40
updated norm: tensor(0.3842, device='cuda:2')
*********Round: 4 Train Loss: 5.686
### Creating features from model ###
########### begin kmeans ##########
Global NMI = 0.4182 ARI = 0.3064 F = 0.4014 ACC = 0.5193
Norm: tensor(1.3162, device='cuda:2')
Round: 5 User: 0 Train Loss: 5.570
Norm: tensor(0.9229, device='cuda:2')
Round: 5 User: 1 Train Loss: 5.581
Norm: tensor(1.3649, device='cuda:2')
Round: 5 User: 2 Train Loss: 5.668
Norm: tensor(1.2837, device='cuda:2')
Round: 5 User: 3 Train Loss: 5.700
Norm: tensor(1.2012, device='cuda:2')
Round: 5 User: 4 Train Loss: 5.647
Norm: tensor(1.3751, device='cuda:2')
Round: 5 User: 5 Train Loss: 5.746
Norm: tensor(1.1043, device='cuda:2')
Round: 5 User: 6 Train Loss: 5.703
Norm: tensor(1.6718, device='cuda:2')
Round: 5 User: 7 Train Loss: 5.710
Norm: tensor(1.0792, device='cuda:2')
Round: 5 User: 8 Train Loss: 5.684
Norm: tensor(1.1591, device='cuda:2')
Round: 5 User: 9 Train Loss: 5.713
Norm: tensor(0.9990, device='cuda:2')
Round: 5 User: 10 Train Loss: 5.584
Norm: tensor(1.0652, device='cuda:2')
Round: 5 User: 11 Train Loss: 5.595
Norm: tensor(1.1945, device='cuda:2')
Round: 5 User: 12 Train Loss: 5.688
Norm: tensor(1.0895, device='cuda:2')
Round: 5 User: 13 Train Loss: 5.689
Norm: tensor(1.0933, device='cuda:2')
Round: 5 User: 14 Train Loss: 5.573
Norm: tensor(1.0570, device='cuda:2')
Round: 5 User: 15 Train Loss: 5.571
Norm: tensor(1.2521, device='cuda:2')
Round: 5 User: 16 Train Loss: 5.785
Norm: tensor(1.1104, device='cuda:2')
Round: 5 User: 17 Train Loss: 5.635
Norm: tensor(1.1012, device='cuda:2')
Round: 5 User: 18 Train Loss: 5.649
Norm: tensor(1.2023, device='cuda:2')
Round: 5 User: 19 Train Loss: 5.626
Norm: tensor(0.9341, device='cuda:2')
Round: 5 User: 20 Train Loss: 5.568
Norm: tensor(1.2099, device='cuda:2')
Round: 5 User: 21 Train Loss: 5.676
Norm: tensor(1.0502, device='cuda:2')
Round: 5 User: 22 Train Loss: 5.637
Norm: tensor(1.2058, device='cuda:2')
Round: 5 User: 23 Train Loss: 5.611
Norm: tensor(1.1518, device='cuda:2')
Round: 5 User: 24 Train Loss: 5.650
Norm: tensor(1.4314, device='cuda:2')
Round: 5 User: 25 Train Loss: 5.757
Norm: tensor(1.0593, device='cuda:2')
Round: 5 User: 26 Train Loss: 5.594
Norm: tensor(1.1456, device='cuda:2')
Round: 5 User: 27 Train Loss: 5.694
Norm: tensor(1.1394, device='cuda:2')
Round: 5 User: 28 Train Loss: 5.604
Norm: tensor(1.2663, device='cuda:2')
Round: 5 User: 29 Train Loss: 5.692
Norm: tensor(1.2546, device='cuda:2')
Round: 5 User: 30 Train Loss: 5.738
Norm: tensor(1.1456, device='cuda:2')
Round: 5 User: 31 Train Loss: 5.638
Norm: tensor(1.5659, device='cuda:2')
Round: 5 User: 32 Train Loss: 5.682
Norm: tensor(1.1324, device='cuda:2')
Round: 5 User: 33 Train Loss: 5.595
Norm: tensor(1.0076, device='cuda:2')
Round: 5 User: 34 Train Loss: 5.596
Norm: tensor(0.9828, device='cuda:2')
Round: 5 User: 35 Train Loss: 5.601
Norm: tensor(1.3964, device='cuda:2')
Round: 5 User: 36 Train Loss: 5.638
Norm: tensor(1.3243, device='cuda:2')
Round: 5 User: 37 Train Loss: 5.730
Norm: tensor(1.3592, device='cuda:2')
Round: 5 User: 38 Train Loss: 5.700
Norm: tensor(1.1459, device='cuda:2')
Round: 5 User: 39 Train Loss: 5.615
clip_bound 0.9887861400842668
count 40
updated norm: tensor(0.3285, device='cuda:2')
*********Round: 5 Train Loss: 5.653
### Creating features from model ###
########### begin kmeans ##########
Global NMI = 0.4274 ARI = 0.3026 F = 0.4005 ACC = 0.5179
Norm: tensor(1.1847, device='cuda:2')
Round: 6 User: 0 Train Loss: 5.551
Norm: tensor(0.8540, device='cuda:2')
Round: 6 User: 1 Train Loss: 5.540
Norm: tensor(1.4807, device='cuda:2')
Round: 6 User: 2 Train Loss: 5.631
Norm: tensor(1.1313, device='cuda:2')
Round: 6 User: 3 Train Loss: 5.664
Norm: tensor(1.1742, device='cuda:2')
Round: 6 User: 4 Train Loss: 5.655
Norm: tensor(1.2328, device='cuda:2')
Round: 6 User: 5 Train Loss: 5.628
Norm: tensor(1.0568, device='cuda:2')
Round: 6 User: 6 Train Loss: 5.621
Norm: tensor(1.4130, device='cuda:2')
Round: 6 User: 7 Train Loss: 5.609
Norm: tensor(1.1550, device='cuda:2')
Round: 6 User: 8 Train Loss: 5.680
Norm: tensor(1.0924, device='cuda:2')
Round: 6 User: 9 Train Loss: 5.683
Norm: tensor(0.8352, device='cuda:2')
Round: 6 User: 10 Train Loss: 5.561
Norm: tensor(1.0178, device='cuda:2')
Round: 6 User: 11 Train Loss: 5.608
Norm: tensor(1.2899, device='cuda:2')
Round: 6 User: 12 Train Loss: 5.655
Norm: tensor(1.0086, device='cuda:2')
Round: 6 User: 13 Train Loss: 5.657
Norm: tensor(1.0096, device='cuda:2')
Round: 6 User: 14 Train Loss: 5.503
Norm: tensor(0.9841, device='cuda:2')
Round: 6 User: 15 Train Loss: 5.525
Norm: tensor(1.2597, device='cuda:2')
Round: 6 User: 16 Train Loss: 5.789
Norm: tensor(1.1606, device='cuda:2')
Round: 6 User: 17 Train Loss: 5.619
Norm: tensor(1.0819, device='cuda:2')
Round: 6 User: 18 Train Loss: 5.634
Norm: tensor(1.0858, device='cuda:2')
Round: 6 User: 19 Train Loss: 5.627
Norm: tensor(0.9172, device='cuda:2')
Round: 6 User: 20 Train Loss: 5.536
Norm: tensor(1.1004, device='cuda:2')
Round: 6 User: 21 Train Loss: 5.639
Norm: tensor(0.9756, device='cuda:2')
Round: 6 User: 22 Train Loss: 5.636
Norm: tensor(1.3844, device='cuda:2')
Round: 6 User: 23 Train Loss: 5.655
Norm: tensor(1.1858, device='cuda:2')
Round: 6 User: 24 Train Loss: 5.655
Norm: tensor(1.5428, device='cuda:2')
Round: 6 User: 25 Train Loss: 5.718
Norm: tensor(1.0294, device='cuda:2')
Round: 6 User: 26 Train Loss: 5.596
Norm: tensor(1.0341, device='cuda:2')
Round: 6 User: 27 Train Loss: 5.700
Norm: tensor(1.1308, device='cuda:2')
Round: 6 User: 28 Train Loss: 5.590
Norm: tensor(1.1979, device='cuda:2')
Round: 6 User: 29 Train Loss: 5.689
Norm: tensor(1.2307, device='cuda:2')
Round: 6 User: 30 Train Loss: 5.718
Norm: tensor(1.2113, device='cuda:2')
Round: 6 User: 31 Train Loss: 5.608
Norm: tensor(1.2546, device='cuda:2')
Round: 6 User: 32 Train Loss: 5.624
Norm: tensor(1.2415, device='cuda:2')
Round: 6 User: 33 Train Loss: 5.626
Norm: tensor(0.9332, device='cuda:2')
Round: 6 User: 34 Train Loss: 5.558
Norm: tensor(0.9740, device='cuda:2')
Round: 6 User: 35 Train Loss: 5.634
Norm: tensor(1.3993, device='cuda:2')
Round: 6 User: 36 Train Loss: 5.648
Norm: tensor(1.2718, device='cuda:2')
Round: 6 User: 37 Train Loss: 5.737
Norm: tensor(1.4334, device='cuda:2')
Round: 6 User: 38 Train Loss: 5.708
Norm: tensor(1.1462, device='cuda:2')
Round: 6 User: 39 Train Loss: 5.617
clip_bound 0.9525735706090928
count 40
updated norm: tensor(0.2846, device='cuda:2')
*********Round: 6 Train Loss: 5.633
### Creating features from model ###
########### begin kmeans ##########
Global NMI = 0.4332 ARI = 0.3160 F = 0.4081 ACC = 0.5282
Norm: tensor(1.0886, device='cuda:2')
Round: 7 User: 0 Train Loss: 5.538
Norm: tensor(0.8156, device='cuda:2')
Round: 7 User: 1 Train Loss: 5.523
Norm: tensor(1.2509, device='cuda:2')
Round: 7 User: 2 Train Loss: 5.583
Norm: tensor(1.1976, device='cuda:2')
Round: 7 User: 3 Train Loss: 5.655
Norm: tensor(1.1153, device='cuda:2')
Round: 7 User: 4 Train Loss: 5.640
Norm: tensor(1.1975, device='cuda:2')
Round: 7 User: 5 Train Loss: 5.628
Norm: tensor(1.0359, device='cuda:2')
Round: 7 User: 6 Train Loss: 5.602
Norm: tensor(1.3749, device='cuda:2')
Round: 7 User: 7 Train Loss: 5.594
Norm: tensor(1.0492, device='cuda:2')
Round: 7 User: 8 Train Loss: 5.577
Norm: tensor(1.1133, device='cuda:2')
Round: 7 User: 9 Train Loss: 5.625
Norm: tensor(1.0029, device='cuda:2')
Round: 7 User: 10 Train Loss: 5.565
Norm: tensor(0.9693, device='cuda:2')
Round: 7 User: 11 Train Loss: 5.602
Norm: tensor(1.1659, device='cuda:2')
Round: 7 User: 12 Train Loss: 5.648
Norm: tensor(1.0465, device='cuda:2')
Round: 7 User: 13 Train Loss: 5.646
Norm: tensor(0.9680, device='cuda:2')
Round: 7 User: 14 Train Loss: 5.528
Norm: tensor(1.0125, device='cuda:2')
Round: 7 User: 15 Train Loss: 5.570
Norm: tensor(1.1697, device='cuda:2')
Round: 7 User: 16 Train Loss: 5.774
Norm: tensor(1.0889, device='cuda:2')
Round: 7 User: 17 Train Loss: 5.606
Norm: tensor(1.1780, device='cuda:2')
Round: 7 User: 18 Train Loss: 5.690
Norm: tensor(1.0504, device='cuda:2')
Round: 7 User: 19 Train Loss: 5.573
Norm: tensor(0.8495, device='cuda:2')
Round: 7 User: 20 Train Loss: 5.500
Norm: tensor(1.1171, device='cuda:2')
Round: 7 User: 21 Train Loss: 5.643
Norm: tensor(0.9676, device='cuda:2')
Round: 7 User: 22 Train Loss: 5.616
Norm: tensor(1.2511, device='cuda:2')
Round: 7 User: 23 Train Loss: 5.606
Norm: tensor(1.1070, device='cuda:2')
Round: 7 User: 24 Train Loss: 5.603
Norm: tensor(1.4913, device='cuda:2')
Round: 7 User: 25 Train Loss: 5.712
Norm: tensor(1.1725, device='cuda:2')
Round: 7 User: 26 Train Loss: 5.611
Norm: tensor(0.8990, device='cuda:2')
Round: 7 User: 27 Train Loss: 5.610
Norm: tensor(1.1367, device='cuda:2')
Round: 7 User: 28 Train Loss: 5.619
Norm: tensor(1.1049, device='cuda:2')
Round: 7 User: 29 Train Loss: 5.648
Norm: tensor(1.1169, device='cuda:2')
Round: 7 User: 30 Train Loss: 5.625
Norm: tensor(1.0864, device='cuda:2')
Round: 7 User: 31 Train Loss: 5.564
Norm: tensor(1.1419, device='cuda:2')
Round: 7 User: 32 Train Loss: 5.555
Norm: tensor(1.0618, device='cuda:2')
Round: 7 User: 33 Train Loss: 5.560
Norm: tensor(0.9812, device='cuda:2')
Round: 7 User: 34 Train Loss: 5.554
Norm: tensor(0.9051, device='cuda:2')
Round: 7 User: 35 Train Loss: 5.584
Norm: tensor(1.4695, device='cuda:2')
Round: 7 User: 36 Train Loss: 5.621
Norm: tensor(1.1900, device='cuda:2')
Round: 7 User: 37 Train Loss: 5.630
Norm: tensor(1.6992, device='cuda:2')
Round: 7 User: 38 Train Loss: 5.651
Norm: tensor(1.0787, device='cuda:2')
Round: 7 User: 39 Train Loss: 5.593
clip_bound 0.9179551020264627
count 40
updated norm: tensor(0.2621, device='cuda:2')
*********Round: 7 Train Loss: 5.607
### Creating features from model ###
########### begin kmeans ##########
Global NMI = 0.4270 ARI = 0.3161 F = 0.4057 ACC = 0.5260
Norm: tensor(1.0707, device='cuda:2')
Round: 8 User: 0 Train Loss: 5.537
Norm: tensor(0.8701, device='cuda:2')
Round: 8 User: 1 Train Loss: 5.569
Norm: tensor(1.2988, device='cuda:2')
Round: 8 User: 2 Train Loss: 5.612
Norm: tensor(1.1138, device='cuda:2')
Round: 8 User: 3 Train Loss: 5.659
Norm: tensor(1.0104, device='cuda:2')
Round: 8 User: 4 Train Loss: 5.626
Norm: tensor(1.0342, device='cuda:2')
Round: 8 User: 5 Train Loss: 5.601
Norm: tensor(1.0200, device='cuda:2')
Round: 8 User: 6 Train Loss: 5.635
Norm: tensor(1.2111, device='cuda:2')
Round: 8 User: 7 Train Loss: 5.573
Norm: tensor(0.9690, device='cuda:2')
Round: 8 User: 8 Train Loss: 5.583
Norm: tensor(0.9995, device='cuda:2')
Round: 8 User: 9 Train Loss: 5.651
Norm: tensor(0.8928, device='cuda:2')
Round: 8 User: 10 Train Loss: 5.544
Norm: tensor(0.8933, device='cuda:2')
Round: 8 User: 11 Train Loss: 5.547
Norm: tensor(1.1466, device='cuda:2')
Round: 8 User: 12 Train Loss: 5.613
Norm: tensor(0.9676, device='cuda:2')
Round: 8 User: 13 Train Loss: 5.583
Norm: tensor(0.9477, device='cuda:2')
Round: 8 User: 14 Train Loss: 5.476
Norm: tensor(0.8926, device='cuda:2')
Round: 8 User: 15 Train Loss: 5.509
Norm: tensor(1.1393, device='cuda:2')
Round: 8 User: 16 Train Loss: 5.716
Norm: tensor(1.0907, device='cuda:2')
Round: 8 User: 17 Train Loss: 5.607
Norm: tensor(1.0268, device='cuda:2')
Round: 8 User: 18 Train Loss: 5.595
Norm: tensor(1.0329, device='cuda:2')
Round: 8 User: 19 Train Loss: 5.592
Norm: tensor(0.8986, device='cuda:2')
Round: 8 User: 20 Train Loss: 5.493
Norm: tensor(1.0217, device='cuda:2')
Round: 8 User: 21 Train Loss: 5.589
Norm: tensor(0.9162, device='cuda:2')
Round: 8 User: 22 Train Loss: 5.611
Norm: tensor(1.1940, device='cuda:2')
Round: 8 User: 23 Train Loss: 5.583
Norm: tensor(1.0915, device='cuda:2')
Round: 8 User: 24 Train Loss: 5.628
Norm: tensor(1.3309, device='cuda:2')
Round: 8 User: 25 Train Loss: 5.659
Norm: tensor(0.9859, device='cuda:2')
Round: 8 User: 26 Train Loss: 5.561
Norm: tensor(0.8954, device='cuda:2')
Round: 8 User: 27 Train Loss: 5.582
Norm: tensor(1.1557, device='cuda:2')
Round: 8 User: 28 Train Loss: 5.563
Norm: tensor(1.1978, device='cuda:2')
Round: 8 User: 29 Train Loss: 5.649
Norm: tensor(1.0456, device='cuda:2')
Round: 8 User: 30 Train Loss: 5.671
Norm: tensor(1.0129, device='cuda:2')
Round: 8 User: 31 Train Loss: 5.561
Norm: tensor(1.1205, device='cuda:2')
Round: 8 User: 32 Train Loss: 5.568
Norm: tensor(0.9909, device='cuda:2')
Round: 8 User: 33 Train Loss: 5.537
Norm: tensor(0.9069, device='cuda:2')
Round: 8 User: 34 Train Loss: 5.558
Norm: tensor(0.8494, device='cuda:2')
Round: 8 User: 35 Train Loss: 5.556
Norm: tensor(1.3014, device='cuda:2')
Round: 8 User: 36 Train Loss: 5.640
Norm: tensor(1.1307, device='cuda:2')
Round: 8 User: 37 Train Loss: 5.630
Norm: tensor(1.4288, device='cuda:2')
Round: 8 User: 38 Train Loss: 5.645
Norm: tensor(0.9398, device='cuda:2')
Round: 8 User: 39 Train Loss: 5.540
clip_bound 0.8510509803891182
count 40
updated norm: tensor(0.2475, device='cuda:2')
*********Round: 8 Train Loss: 5.591
### Creating features from model ###
########### begin kmeans ##########
Global NMI = 0.4211 ARI = 0.3112 F = 0.4029 ACC = 0.5232
Norm: tensor(1.1473, device='cuda:2')
Round: 9 User: 0 Train Loss: 5.518
Norm: tensor(0.8381, device='cuda:2')
Round: 9 User: 1 Train Loss: 5.526
Norm: tensor(1.2245, device='cuda:2')
Round: 9 User: 2 Train Loss: 5.552
Norm: tensor(0.9719, device='cuda:2')
Round: 9 User: 3 Train Loss: 5.568
Norm: tensor(0.9726, device='cuda:2')
Round: 9 User: 4 Train Loss: 5.650
Norm: tensor(1.0837, device='cuda:2')
Round: 9 User: 5 Train Loss: 5.614
Norm: tensor(1.0953, device='cuda:2')
Round: 9 User: 6 Train Loss: 5.657
Norm: tensor(1.4334, device='cuda:2')
Round: 9 User: 7 Train Loss: 5.624
Norm: tensor(0.9053, device='cuda:2')
Round: 9 User: 8 Train Loss: 5.555
Norm: tensor(1.0044, device='cuda:2')
Round: 9 User: 9 Train Loss: 5.624
Norm: tensor(0.9377, device='cuda:2')
Round: 9 User: 10 Train Loss: 5.539
Norm: tensor(0.9630, device='cuda:2')
Round: 9 User: 11 Train Loss: 5.562
Norm: tensor(1.1534, device='cuda:2')
Round: 9 User: 12 Train Loss: 5.651
Norm: tensor(0.9482, device='cuda:2')
Round: 9 User: 13 Train Loss: 5.562
Norm: tensor(0.9282, device='cuda:2')
Round: 9 User: 14 Train Loss: 5.455
Norm: tensor(0.8983, device='cuda:2')
Round: 9 User: 15 Train Loss: 5.489
Norm: tensor(1.1181, device='cuda:2')
Round: 9 User: 16 Train Loss: 5.714
Norm: tensor(1.1517, device='cuda:2')
Round: 9 User: 17 Train Loss: 5.607
Norm: tensor(1.0113, device='cuda:2')
Round: 9 User: 18 Train Loss: 5.615
Norm: tensor(1.0382, device='cuda:2')
Round: 9 User: 19 Train Loss: 5.555
Norm: tensor(0.8548, device='cuda:2')
Round: 9 User: 20 Train Loss: 5.475
Norm: tensor(0.9861, device='cuda:2')
Round: 9 User: 21 Train Loss: 5.589
Norm: tensor(0.9032, device='cuda:2')
Round: 9 User: 22 Train Loss: 5.630
Norm: tensor(1.0749, device='cuda:2')
Round: 9 User: 23 Train Loss: 5.565
Norm: tensor(1.2260, device='cuda:2')
Round: 9 User: 24 Train Loss: 5.700
Norm: tensor(1.4182, device='cuda:2')
Round: 9 User: 25 Train Loss: 5.672
Norm: tensor(0.9266, device='cuda:2')
Round: 9 User: 26 Train Loss: 5.523
Norm: tensor(0.9322, device='cuda:2')
Round: 9 User: 27 Train Loss: 5.601
Norm: tensor(1.0836, device='cuda:2')
Round: 9 User: 28 Train Loss: 5.537
Norm: tensor(1.0134, device='cuda:2')
Round: 9 User: 29 Train Loss: 5.599
Norm: tensor(1.1486, device='cuda:2')
Round: 9 User: 30 Train Loss: 5.672
Norm: tensor(0.9841, device='cuda:2')
Round: 9 User: 31 Train Loss: 5.527
Norm: tensor(1.0666, device='cuda:2')