-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain.py
57 lines (46 loc) · 2.25 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import time
from options.train_options import TrainOptions
from data.dataloader import CreateDataLoader
from util.visualizer import Visualizer
def main():
opt = TrainOptions().parse()
data_loader = CreateDataLoader(opt)
dataset_size = len(data_loader) * opt.batchSize
visualizer = Visualizer(opt)
if 'Flowers' in opt.dataroot:
from models.ZUNIT_flo import ZUNIT
else:
from models.ZUNIT import ZUNIT
model = ZUNIT()
model.initialize(opt)
total_steps = int(opt.which_epoch)*dataset_size if opt.continue_train else 0
start_epoch = int(opt.which_epoch)+1 if opt.continue_train else 1
for epoch in range(start_epoch, opt.niter + opt.niter_decay + 1):
epoch_start_time = time.time()
save_result = True
for i, data in enumerate(data_loader):
iter_start_time = time.time()
total_steps += opt.batchSize
epoch_iter = total_steps - dataset_size * (epoch - 1)
model.update_model(data)
if save_result or total_steps % opt.display_freq == 0:
save_result = save_result or total_steps % opt.update_html_freq == 0
print('dataset:{}'.format(opt.name))
visualizer.display_current_results(model.get_current_visuals(), epoch, ncols=1, save_result=save_result)
save_result = False
if total_steps % opt.print_freq == 0:
errors = model.get_current_errors()
t = (time.time() - iter_start_time) / opt.batchSize
visualizer.print_current_errors(epoch, epoch_iter, errors, t)
if opt.display_id > 0:
visualizer.plot_current_errors(epoch, float(epoch_iter)/dataset_size, opt, errors)
if total_steps % opt.save_latest_freq == 0:
print('saving the latest model (epoch %d, total_steps %d)' %(epoch, total_steps))
model.save('latest')
if epoch % opt.save_epoch_freq == 0:
print('saving the model at the end of epoch %d, iters %d' %(epoch, total_steps))
model.save('latest')
model.save(epoch)
model.update_lr()
if __name__ == '__main__':
main()