-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathmain.py
120 lines (114 loc) · 4.55 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
# ------------------------------------------------------------------------------
# --coding='utf-8'--
# Written by czifan ([email protected])
# ------------------------------------------------------------------------------
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import torch
import torch.optim as optim
import prettytable as pt
from networks import DeepSurv
from networks import NegativeLogLikelihood
from datasets import SurvivalDataset
from utils import read_config
from utils import c_index
from utils import adjust_learning_rate
from utils import create_logger
def train(ini_file):
''' Performs training according to .ini file
:param ini_file: (String) the path of .ini file
:return best_c_index: the best c-index
'''
# reads configuration from .ini file
config = read_config(ini_file)
# builds network|criterion|optimizer based on configuration
model = DeepSurv(config['network']).to(device)
criterion = NegativeLogLikelihood(config['network']).to(device)
optimizer = eval('optim.{}'.format(config['train']['optimizer']))(
model.parameters(), lr=config['train']['learning_rate'])
# constructs data loaders based on configuration
train_dataset = SurvivalDataset(config['train']['h5_file'], is_train=True)
test_dataset = SurvivalDataset(config['train']['h5_file'], is_train=False)
train_loader = torch.utils.data.DataLoader(
train_dataset, batch_size=train_dataset.__len__())
test_loader = torch.utils.data.DataLoader(
test_dataset, batch_size=test_dataset.__len__())
# training
best_c_index = 0
flag = 0
for epoch in range(1, config['train']['epochs']+1):
# adjusts learning rate
lr = adjust_learning_rate(optimizer, epoch,
config['train']['learning_rate'],
config['train']['lr_decay_rate'])
# train step
model.train()
for X, y, e in train_loader:
# makes predictions
risk_pred = model(X)
train_loss = criterion(risk_pred, y, e, model)
train_c = c_index(-risk_pred, y, e)
# updates parameters
optimizer.zero_grad()
train_loss.backward()
optimizer.step()
# valid step
model.eval()
for X, y, e in test_loader:
# makes predictions
with torch.no_grad():
risk_pred = model(X)
valid_loss = criterion(risk_pred, y, e, model)
valid_c = c_index(-risk_pred, y, e)
if best_c_index < valid_c:
best_c_index = valid_c
flag = 0
# saves the best model
torch.save({
'model': model.state_dict(),
'optimizer': optimizer.state_dict(),
'epoch': epoch}, os.path.join(models_dir, ini_file.split('\\')[-1]+'.pth'))
else:
flag += 1
if flag >= patience:
return best_c_index
# notes that, train loader and valid loader both have one batch!!!
print('\rEpoch: {}\tLoss: {:.8f}({:.8f})\tc-index: {:.8f}({:.8f})\tlr: {:g}'.format(
epoch, train_loss.item(), valid_loss.item(), train_c, valid_c, lr), end='', flush=False)
return best_c_index
if __name__ == '__main__':
# global settings
logs_dir = 'logs'
models_dir = os.path.join(logs_dir, 'models')
if not os.path.exists(models_dir):
os.makedirs(models_dir)
logger = create_logger(logs_dir)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
configs_dir = 'configs'
params = [
('Simulated Linear', 'linear.ini'),
('Simulated Nonlinear', 'gaussian.ini'),
('WHAS', 'whas.ini'),
('SUPPORT', 'support.ini'),
('METABRIC', 'metabric.ini'),
('Simulated Treatment', 'treatment.ini'),
('Rotterdam & GBSG', 'gbsg.ini')]
patience = 50
# training
headers = []
values = []
for name, ini_file in params:
logger.info('Running {}({})...'.format(name, ini_file))
best_c_index = train(os.path.join(configs_dir, ini_file))
headers.append(name)
values.append('{:.6f}'.format(best_c_index))
print('')
logger.info("The best valid c-index: {}".format(best_c_index))
logger.info('')
# prints results
tb = pt.PrettyTable()
tb.field_names = headers
tb.add_row(values)
logger.info(tb)