-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathmodel_dis.py
159 lines (112 loc) · 4.96 KB
/
model_dis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
import os
import sys
import numpy as np
import torch
import torch.nn.functional as F
from torch import nn
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
sys.path.append(os.path.join(BASE_DIR, 'sampling'))
from data import Tree
from sampling import furthest_point_sample
class PointNet(nn.Module):
def __init__(self, feat_len):
super(PointNet, self).__init__()
self.conv1 = nn.Conv1d(3, 64, 1)
self.conv2 = nn.Conv1d(64, 128, 1)
self.conv3 = nn.Conv1d(128, 1024, 1)
self.mlp = nn.Linear(1024, feat_len)
def forward(self, x):
x = x.permute(0, 2, 1)
x = F.leaky_relu(self.conv1(x))
x = F.leaky_relu(self.conv2(x))
x = F.leaky_relu(self.conv3(x))
x = x.max(dim=-1)[0]
x = F.leaky_relu(self.mlp(x))
return x
class PartEncoder(nn.Module):
def __init__(self, feat_len):
super(PartEncoder, self).__init__()
self.conv1 = nn.Conv1d(3, 64, 1)
self.conv2 = nn.Conv1d(64, 128, 1)
self.conv3 = nn.Conv1d(128, 128, 1)
self.conv4 = nn.Conv1d(128, feat_len, 1)
self.fc = nn.Linear(feat_len, feat_len)
def forward(self, pc):
net = pc.transpose(2, 1)
net = F.leaky_relu(self.conv1(net))
net = F.leaky_relu(self.conv2(net))
net = F.leaky_relu(self.conv3(net))
net = F.leaky_relu(self.conv4(net))
net = net.max(dim=2)[0]
net = F.leaky_relu(self.fc(net))
return net
class ChildrenEncoder(nn.Module):
def __init__(self, feat_len, hidden_len, symmetric_type):
super(ChildrenEncoder, self).__init__()
print(f'Using Symmetric Type: {symmetric_type}')
self.symmetric_type = symmetric_type
self.child_op = nn.Linear(feat_len + Tree.num_sem, hidden_len)
self.second = nn.Linear(hidden_len, feat_len)
def forward(self, child_feats):
child_feats = F.leaky_relu(self.child_op(child_feats))
if self.symmetric_type == 'max':
parent_feat = child_feats.max(dim=1)[0]
elif self.symmetric_type == 'sum':
parent_feat = child_feats.sum(dim=1)
elif self.symmetric_type == 'avg':
parent_feat = child_feats.mean(dim=1)
else:
raise ValueError(f'Unknown symmetric type: {self.symmetric_type}')
parent_feat = F.leaky_relu(self.second(parent_feat))
return parent_feat
class Network(nn.Module):
def __init__(self, args, device):
super(Network, self).__init__()
self.args = args
self.device = device
self.part_encoder = PartEncoder(args.feat_len)
self.children_encoder = ChildrenEncoder(args.feat_len, args.hidden_len, args.symmetric_type)
self.pointnet_encoder = PointNet(args.feat_len)
self.mlp1 = nn.Linear(args.feat_len, 1)
self.mlp2 = nn.Linear(args.feat_len, 1)
self.final_activation = args.final_activation
def encode(self, node, leaf_feats):
if len(node.children) == 0:
return leaf_feats[:, node.geo_id]
else:
child_feats = []
batch_size = leaf_feats.shape[0]
for cnode in node.children:
cur_child_feat = torch.cat([self.encode(cnode, leaf_feats), cnode.get_semantic_one_hot().repeat(batch_size, 1)], dim=1)
child_feats.append(cur_child_feat.unsqueeze(dim=1))
child_feats = torch.cat(child_feats, dim=1)
return self.children_encoder(child_feats)
def forward(self, node, pcs):
batch_size = pcs.shape[0]
part_cnt = pcs.shape[1]
### StructureNet Discriminator
# encode all leaf geometry
leaf_feats = self.part_encoder(pcs.view(batch_size * part_cnt, -1, 3)).view(batch_size, part_cnt, -1)
# encode the hierarchy until root
sn_net = self.encode(node, leaf_feats)
### holistic PointNet Discriminator
# fps
shape_pcs = pcs.view(batch_size, -1, 3)
with torch.no_grad():
shape_pc_id1 = torch.arange(batch_size).unsqueeze(1).repeat(1, self.args.num_point_per_shape).long().view(-1).to(self.device)
shape_pc_id2 = furthest_point_sample(shape_pcs, self.args.num_point_per_shape).long().view(-1)
shape_pcs = shape_pcs[shape_pc_id1, shape_pc_id2].view(batch_size, self.args.num_point_per_shape, 3)
# pointnet encode
pn_net = self.pointnet_encoder(shape_pcs)
### balance two discriminators
# [SN Dis] produce real/fake scores
sn_net = self.mlp1(sn_net).squeeze(1)
if self.final_activation:
sn_net = torch.sigmoid(sn_net)
# [PN Dis] produce real/fake scores
pn_net = self.mlp2(pn_net).squeeze(1)
if self.final_activation:
pn_net = torch.sigmoid(pn_net)
# aggregate two scores
net = sn_net + pn_net * self.args.pointnet_dis_score_multiplier
return net, sn_net, pn_net