forked from microsoft/QuantumKatas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ReferenceImplementation.qs
329 lines (281 loc) · 14.2 KB
/
ReferenceImplementation.qs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
// Copyright (c) Microsoft Corporation. All rights reserved.
// Licensed under the MIT license.
//////////////////////////////////////////////////////////////////////
// This file contains reference solutions to all tasks.
// The tasks themselves can be found in Tasks.qs file.
// We recommend that you try to solve the tasks yourself first,
// but feel free to look up the solution if you get stuck.
//////////////////////////////////////////////////////////////////////
namespace Quantum.Kata.GroversAlgorithm {
open Microsoft.Quantum.Measurement;
open Microsoft.Quantum.Arrays;
open Microsoft.Quantum.Intrinsic;
open Microsoft.Quantum.Canon;
open Microsoft.Quantum.Convert;
//////////////////////////////////////////////////////////////////
// Part I. Oracles for SAT problems
//////////////////////////////////////////////////////////////////
// Task 1.1. The AND oracle: f(x) = x₀ ∧ x₁
operation Oracle_And_Reference_2 (queryRegister : Qubit[], target : Qubit) : Unit is Adj {
CCNOT(queryRegister[0], queryRegister[1], target);
}
// AND oracle for an arbitrary number of qubits in query register
operation Oracle_And_Reference (queryRegister : Qubit[], target : Qubit) : Unit is Adj {
Controlled X(queryRegister, target);
}
// ------------------------------------------------------
// Task 1.2. The OR oracle: f(x) = x₀ ∨ x₁
operation Oracle_Or_Reference_2 (queryRegister : Qubit[], target : Qubit) : Unit is Adj {
// x₀ ∨ x₁ = ¬ (¬x₀ ∧ ¬x₁)
// First, flip target if both qubits are in |0⟩ state
within {
X(queryRegister[0]);
X(queryRegister[1]);
}
apply {
CCNOT(queryRegister[0], queryRegister[1], target);
}
// Then flip target again to get negation
X(target);
}
// OR oracle for an arbitrary number of qubits in query register
operation Oracle_Or_Reference (queryRegister : Qubit[], target : Qubit) : Unit is Adj {
// x₀ ∨ x₁ = ¬ (¬x₀ ∧ ¬x₁)
// First, flip target if both qubits are in |0⟩ state
(ControlledOnInt(0, X))(queryRegister, target);
// Then flip target again to get negation
X(target);
}
// ------------------------------------------------------
// Task 1.3. The XOR oracle: f(x) = x₀ ⊕ x₁
operation Oracle_Xor_Reference_2 (queryRegister : Qubit[], target : Qubit) : Unit is Adj {
CNOT(queryRegister[0], target);
CNOT(queryRegister[1], target);
}
// XOR oracle for an arbitrary number of qubits in query register
operation Oracle_Xor_Reference (queryRegister : Qubit[], target : Qubit) : Unit is Adj {
ApplyToEachA(CNOT(_, target), queryRegister);
}
// Alternative solution to task 1.3, based on representation as a 2-SAT problem
operation Oracle_Xor_2SAT (queryRegister : Qubit[], target : Qubit) : Unit is Adj {
// x₀ ⊕ x₁ = (x₀ ∨ x₁) ∧ (¬x₀ ∨ ¬x₁)
// Allocate 2 auxiliary qubits to store results of clause evaluation
using ((a1, a2) = (Qubit(), Qubit())) {
within {
// The first clause is exactly the Or oracle
Oracle_Or_Reference(queryRegister, a1);
// The second clause is the Or oracle, applied to negations of the variables
ApplyWithA(ApplyToEachA(X, _), Oracle_Or_Reference(_, a2), queryRegister);
}
apply {
// To calculate the final answer, apply the And oracle with the ancilla qubits as inputs
Oracle_And_Reference([a1, a2], target);
}
}
}
// ------------------------------------------------------
// Task 1.4. Alternating bits oracle: f(x) = (x₀ ⊕ x₁) ∧ (x₁ ⊕ x₂) ∧ ... ∧ (xₙ₋₂ ⊕ xₙ₋₁)
operation Oracle_AlternatingBits_Reference (queryRegister : Qubit[], target : Qubit) : Unit is Adj {
// Allocate N-1 qubits to store results of clauses evaluation
let N = Length(queryRegister);
using (anc = Qubit[N-1]) {
within {
// Evaluate all XOR clauses (using XOR oracle) and uncompute after
for (i in 0..N-2) {
Oracle_Xor_Reference(queryRegister[i..i+1], anc[i]);
}
}
apply {
// Evaluate the overall formula as an AND oracle (can use reference depending on the implementation)
Controlled X(anc, target);
}
}
}
// Answer-based solution for alternating bits oracle
operation FlipAlternatingPositionBits_Reference (register : Qubit[], firstIndex : Int) : Unit is Adj {
// iterate over elements in every second position, starting with firstIndex (indexes are 0-based)
for (i in firstIndex .. 2 .. Length(register) - 1) {
X(register[i]);
}
}
operation Oracle_AlternatingBits_Answer (queryRegister : Qubit[], target : Qubit) : Unit is Adj {
// similar to task 1.2 from GroversAlgorithm kata:
// first mark the state with 1s in even positions (starting with the first qubit, index 0),
// then mark the state with 1s in odd positions
for (firstIndex in 0..1) {
within {
FlipAlternatingPositionBits_Reference(queryRegister, firstIndex);
}
apply {
Controlled X(queryRegister, target);
}
}
}
// ------------------------------------------------------
function GetClauseQubits (queryRegister : Qubit[], clause : (Int, Bool)[]) : (Qubit[], Bool[]) {
mutable clauseQubits = new Qubit[Length(clause)];
mutable flip = new Bool[Length(clause)];
for (varIndex in 0 .. Length(clause) - 1) {
let (index, isTrue) = clause[varIndex];
// Add the variable used in the clause to the list of variables which we'll need to call the OR oracle
set clauseQubits w/= varIndex <- queryRegister[index];
// If the negation of the variable is present in the formula, mark the qubit as needing a flip
set flip w/= varIndex <- not isTrue;
}
return (clauseQubits, flip);
}
// Task 1.5. Evaluate one clause of a SAT formula
operation Oracle_SATClause_Reference (queryRegister : Qubit[],
target : Qubit,
clause : (Int, Bool)[]) : Unit is Adj {
let (clauseQubits, flip) = GetClauseQubits(queryRegister, clause);
// Actually calculate the clause (flip the necessary qubits, call OR oracle, flip them back)
within {
ApplyPauliFromBitString(PauliX, true, flip, clauseQubits);
}
apply {
Oracle_Or_Reference(clauseQubits, target);
}
}
// ------------------------------------------------------
// Helper operation to evaluate all OR clauses given in the formula (independent on the number of variables in each clause)
operation EvaluateOrClauses (queryRegister : Qubit[],
ancillaRegister : Qubit[],
problem : (Int, Bool)[][],
clauseOracle : ((Qubit[], Qubit, (Int, Bool)[]) => Unit is Adj)) : Unit is Adj {
for (clauseIndex in 0..Length(problem)-1) {
clauseOracle(queryRegister, ancillaRegister[clauseIndex], problem[clauseIndex]);
}
}
// Task 1.6. General SAT problem oracle: f(x) = ∧ᵢ (∨ₖ yᵢₖ), yᵢₖ = either xᵢₖ or ¬xᵢₖ
operation Oracle_SAT_Reference (queryRegister : Qubit[],
target : Qubit,
problem : (Int, Bool)[][]) : Unit is Adj {
// Similar to task 1.4.
// Allocate qubits to store results of clauses evaluation
using (ancillaRegister = Qubit[Length(problem)]) {
// Compute clauses, evaluate the overall formula as an AND oracle (can use reference depending on the implementation) and uncompute
within {
EvaluateOrClauses(queryRegister, ancillaRegister, problem, Oracle_SATClause_Reference);
}
apply {
Controlled X(ancillaRegister, target);
}
}
}
//////////////////////////////////////////////////////////////////
// Part II. Oracles for exactly-1 3-SAT problem
//////////////////////////////////////////////////////////////////
// Task 2.1. "Exactly one |1⟩" oracle
operation Oracle_Exactly1One_Reference_3 (queryRegister : Qubit[], target : Qubit) : Unit is Adj {
ApplyToEachA(CNOT(_, target), queryRegister);
// cancel the case of all 3 input qubits in |1⟩ state
Controlled X(queryRegister, target);
}
// "Exactly one |1⟩" oracle for an arbitrary number of qubits in query register
operation Oracle_Exactly1One_Reference (queryRegister : Qubit[], target : Qubit) : Unit is Adj {
mutable bits = new Bool[Length(queryRegister)];
for (i in 0..Length(queryRegister) - 1) {
// Iterate over all possible bit strings which have exactly one bit set to 1
// and perform a controlled X with each of these bit strings as control
(ControlledOnBitString(bits w/ i <- true, X))(queryRegister, target);
}
}
// ------------------------------------------------------
operation Oracle_Exactly1OneClause_Reference (queryRegister : Qubit[],
target : Qubit,
clause : (Int, Bool)[]) : Unit is Adj {
let (clauseQubits, flip) = GetClauseQubits(queryRegister, clause);
// Actually calculate the clause (flip the necessary qubits, call the oracle, flip them back)
within {
ApplyPauliFromBitString(PauliX, true, flip, clauseQubits);
}
apply {
// This is the only difference with the normal SAT problem - the clause is evaluated with a different oracle
Oracle_Exactly1One_Reference(clauseQubits, target);
}
}
// Task 2.2. "Exactly-1 3-SAT" oracle
operation Oracle_Exactly1_3SAT_Reference (queryRegister : Qubit[],
target : Qubit,
problem : (Int, Bool)[][]) : Unit is Adj {
// similar to task 1.7
using (ancillaRegister = Qubit[Length(problem)]) {
// Compute clauses, evaluate the overall formula as an AND oracle (can use reference depending on the implementation) and uncompute
within {
EvaluateOrClauses(queryRegister, ancillaRegister, problem, Oracle_Exactly1OneClause_Reference);
}
apply {
Controlled X(ancillaRegister, target);
}
}
}
//////////////////////////////////////////////////////////////////
// Part III. Using Grover's algorithm for problems with multiple solutions
//////////////////////////////////////////////////////////////////
operation OracleConverterImpl_Reference (markingOracle : ((Qubit[], Qubit) => Unit is Adj), register : Qubit[]) : Unit is Adj {
using (target = Qubit()) {
within {
// Put the target into the |-⟩ state, perform the apply functionality, then put back into |0⟩ so we can return it
X(target);
H(target);
}
apply {
// Apply the marking oracle; since the target is in the |-⟩ state,
// flipping the target if the register satisfies the oracle condition will apply a -1 factor to the state
markingOracle(register, target);
}
}
}
function OracleConverter_Reference (markingOracle : ((Qubit[], Qubit) => Unit is Adj)) : (Qubit[] => Unit is Adj) {
return OracleConverterImpl_Reference(markingOracle, _);
}
operation GroversAlgorithm_Loop (register : Qubit[], oracle : ((Qubit[], Qubit) => Unit is Adj), iterations : Int) : Unit {
let phaseOracle = OracleConverter_Reference(oracle);
ApplyToEach(H, register);
for (i in 1 .. iterations) {
phaseOracle(register);
within {
ApplyToEachA(H, register);
ApplyToEachA(X, register);
}
apply {
Controlled Z(Most(register), Tail(register));
}
}
}
// Task 3.2. Universal implementation of Grover's algorithm
operation UniversalGroversAlgorithm_Reference (N : Int, oracle : ((Qubit[], Qubit) => Unit is Adj)) : Bool[] {
// In this task you don't know the optimal number of iterations upfront,
// so it makes sense to try different numbers of iterations.
// This way, even if you don't hit the "correct" number of iterations on one of your tries,
// you'll eventually get a high enough success probability.
// This solution tries numbers of iterations that are powers of 2;
// this is not the only valid solution, since a lot of sequences will eventually yield the answer.
mutable answer = new Bool[N];
using ((register, output) = (Qubit[N], Qubit())) {
mutable correct = false;
mutable iter = 1;
repeat {
Message($"Trying search with {iter} iterations");
GroversAlgorithm_Loop(register, oracle, iter);
let res = MultiM(register);
// to check whether the result is correct, apply the oracle to the register plus ancilla after measurement
oracle(register, output);
if (MResetZ(output) == One) {
set correct = true;
set answer = ResultArrayAsBoolArray(res);
}
ResetAll(register);
} until (correct or iter > 100) // the fail-safe to avoid going into an infinite loop
fixup {
set iter *= 2;
}
if (not correct) {
fail "Failed to find an answer";
}
}
Message($"{answer}");
return answer;
}
}