forked from sensorium/Mozzi
-
Notifications
You must be signed in to change notification settings - Fork 0
/
mozzi_fixmath.cpp
174 lines (145 loc) · 4.33 KB
/
mozzi_fixmath.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
#include "mozzi_fixmath.h"
/** @ingroup fixmath
@{
*/
//Snipped from http://code.google.com/p/ht1632c/wiki/Optimizations
//TB2012 changed names to not interfere with arduino compilation
//Fast integer math
//
//If you need to include arithmetic operations in you code but you don't need
//floating point operations, you could use boolean operations instead of arithmetic
//operations, or use smaller data types and custom functions instead of stdlib functions
//or C operators (expecially / and %).
//Look at IntegerCodeSnippets, http://code.google.com/p/ht1632c/wiki/IntegerCodeSnippets
//
//Here is some ready to use fast integer 1 uint8_t wide math functions (from ht1632c library).
/**
fast uint8_t modulus
@param n numerator
@param d denominator
@return modulus
*/
uint8_t uint8_tMod(uint8_t n, uint8_t d)
{
while(n >= d)
n -= d;
return n;
}
/** Fast uint8_t division
@param n numerator
@param d denominator
@return quotient
*/
uint8_t uint8_tDiv(uint8_t n, uint8_t d)
{
uint8_t q = 0;
while(n >= d)
{
n -= d;
q++;
}
return q;
}
/* fast integer (1 uint8_t) PRNG */
uint8_t uint8_tRnd(uint8_t min, uint8_t max)
{
static uint8_t seed;
seed = (21 * seed + 21);
return min + uint8_tMod(seed, --max);
}
//WARNING: don't use this uint8_tRnd() function for cryptography!
//} of snip from http://code.google.com/p/ht1632c/wiki/Optimizations
// from http://stackoverflow.com/questions/101439/the-most-efficient-way-to-implement-an-integer-based-power-function-powint-int
/* Exponentiation by squaring.
*/
int ipow(int base, int exp)
{
int result = 1;
while (exp)
{
if (exp & 1)
result *= base;
exp >>= 1;
base *= base;
}
return result;
}
/*
from: http://objectmix.com/vhdl/189970-2-powerof-x-where-x-fixed-point-value-2.html
to do 2^(x.y) first find
2^x and 2^(x+1) through bit shifting 1 to the left by x and (x + 1) places
now you do linear interpolation by drawing a line through these two points 2^x,
2^(x+1), then use f = m*x+b. the slope, m = rise over run
= (2^(x+1) - 2^x)/((x+1) - (x))
= 2^(x) * (2 - 1) / 1
= 2^(x)
b = 2^x, so to linearly interpolate do....(edited out typo)..
f = 2^(x) * (y) + 2^x
= 2^x * (y + 1)
where x is integer part, y is fractional part
*/
/**
fast replacement for pow(2,x), where x is a Q8n8 fractional
fixed-point exponent. It's less accurate than pow(2,x), but useful where a
tradeoff between accuracy and speed is required to keep audio from glitching.
@param exponent in Q8n8 format.
@return pow(2,x) in Q16n16 format.
@todo Q16n16_pow2() accuracy needs more attention.
*/
Q16n16 Q16n16_pow2(Q8n8 exponent)
{
// to do 2^(x.y) first find
//2^x and 2^(x+1) through bit shifting 1 to the left by x and (x + 1) places
uint8_t Q = (uint8_t)((Q8n8)exponent>>8); // integer part
uint8_t n = (uint8_t) exponent; // fractional part
// f = 2^x * (y + 1)
return (((Q16n16)Q8n8_FIX1 << Q) * (Q8n8_FIX1 + n));
}
//http://www.codecodex.com/wiki/Calculate_an_integer_square_root
//see Integer Square Roots by Jack W. Crenshaw, figure 2, http://www.embedded.com/electronics-blogs/programmer-s-toolbox/4219659/Integer-Square-Roots
uint32_t // OR uint16 OR uint8_t
isqrt32 (uint32_t n) // OR isqrt16 ( uint16_t n ) OR isqrt8 ( uint8_t n ) - respectively [ OR overloaded as isqrt (uint16_t?? n) in C++ ]
{
register uint32_t // OR register uint16_t OR register uint8_t - respectively
root, remainder, place;
root = 0;
remainder = n;
place = 0x40000000; // OR place = 0x4000; OR place = 0x40; - respectively
while (place > remainder)
place = place >> 2;
while (place)
{
if (remainder >= root + place)
{
remainder = remainder - root - place;
root = root + (place << 1);
}
root = root >> 1;
place = place >> 2;
}
return root;
}
//http://www.codecodex.com/wiki/Calculate_an_integer_square_root
uint16_t // OR uint16_t OR uint8_t
isqrt16 (uint16_t n) // OR isqrt16 ( uint16_t n ) OR isqrt8 ( uint8_t n ) - respectively [ OR overloaded as isqrt (uint16_t?? n) in C++ ]
{
register uint16_t // OR register uint16_t OR register uint8_t - respectively
root, remainder, place;
root = 0;
remainder = n;
place = 0x4000; // OR place = 0x4000; OR place = 0x40; - respectively
while (place > remainder)
place = place >> 2;
while (place)
{
if (remainder >= root + place)
{
remainder = remainder - root - place;
root = root + (place << 1);
}
root = root >> 1;
place = place >> 2;
}
return root;
}
/** @} */