forked from castilhocp/arkhrec
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdeck_builder.py
433 lines (350 loc) · 25.3 KB
/
deck_builder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
from arkhrec.data_helpers import filter_cards_in_collection, get_all_cards, get_all_decks, get_all_investigators, get_analysed_card_frequencies, get_card_cooccurrences, get_card_investigator_cooccurrences, get_duplicates_unique_code, get_analysed_cards, get_collection, get_investigator_deck_statistics
import arkhrec.general_helpers
import pandas as pd
import math
import ast
import collections
import ast
bonus_experience = {
'Father Mateo': 5
}
def build_average_deck(investigator, analysed_cards, deck_statistics):
all_cards = get_all_cards()
all_decks = get_all_decks()
inv_assets_percentage = deck_statistics['inv_assets_percentage']/100
inv_events_percentage = deck_statistics['inv_events_percentage']/100
investigator_id = investigator.index[0]
deck_reqs = investigator['deck_requirements'][0].split(',')
card_reqs_codes = ['01000']
for req in deck_reqs:
req_tuple = req.split(':',1)
if(req_tuple[0]=='size'):
deck_size = int(req_tuple[1])
elif (req_tuple[0].strip()=='card'):
card_reqs_codes.append(req_tuple[1].split(':')[0])
card_reqs = all_cards[all_cards['code_str'].isin(card_reqs_codes)]
card_reqs_quants = card_reqs.groupby('type_code')['quantity'].sum()
deck_size_selected = collections.Counter()
faction_selected = collections.Counter()
two_factions_selected = collections.Counter()
alternate_front = collections.Counter()
alternate_back = collections.Counter()
option_selected = collections.Counter()
choice_decks=all_decks[all_decks['investigator_name'] == investigator['name'][0]]
for m in choice_decks.meta:
if m:
m = ast.literal_eval(m)
if 'deck_size_selected' in m:
deck_size_selected[m['deck_size_selected']] = deck_size_selected[m['deck_size_selected']] + 1/len(choice_decks.meta)
if 'faction_selected' in m:
faction_selected[m['faction_selected']] = faction_selected[m['faction_selected']] + 1/len(choice_decks.meta)
if 'option_selected' in m:
option_selected[m['option_selected']] = option_selected[m['option_selected']] + 1/len(choice_decks.meta)
if 'alternate_front' in m:
alternate_front[m['alternate_front']] = alternate_front[m['alternate_front']] + 1/len(choice_decks.meta)
if 'alternate_back' in m:
alternate_back[m['alternate_back']] = alternate_back[m['alternate_back']] + 1/len(choice_decks.meta)
if 'faction_1' in m:
two_factions_selected[m['faction_1']] = two_factions_selected[m['faction_1']] + 1/len(choice_decks.meta)
if 'faction_2' in m:
two_factions_selected[m['faction_2']] = two_factions_selected[m['faction_2']] + 1/len(choice_decks.meta)
deck_size_selected['none'] = 1-sum(deck_size_selected.values())
two_factions_selected['none']=2-sum(two_factions_selected.values())
faction_selected['none'] = 1-sum(faction_selected.values())
option_selected['none'] = 1-sum(option_selected.values())
alternate_front['none'] = 1-sum(alternate_front.values())
alternate_back['none'] = 1-sum(alternate_back.values())
max_faction_selected = max(faction_selected, key=faction_selected.get)
max_deck_size_selected = max(deck_size_selected, key=deck_size_selected.get)
df_two_factions_selected = pd.DataFrame.from_dict(two_factions_selected, orient='index')
df_two_factions_selected.columns = ['percentage']
max_two_factions = df_two_factions_selected['percentage'].nlargest(2)
max_faction_1 = df_two_factions_selected[df_two_factions_selected['percentage'] == max_two_factions[0]].head().index[0]
max_faction_2 = df_two_factions_selected[df_two_factions_selected['percentage'] == max_two_factions[len(max_two_factions)-1]].head().index[0]
inv_card_deck = all_cards.set_index('code_str').loc[investigator_id]
if(max_deck_size_selected != 'none'):
deck_size = int(max_deck_size_selected)
total_deck_size = deck_size + card_reqs_quants.sum()
assets_to_include = round((total_deck_size * inv_assets_percentage) - (card_reqs_quants['asset'] if 'asset' in card_reqs_quants.index else 0))
if(assets_to_include % 2 == 1):
assets_to_include+=1
events_to_include = round((total_deck_size * inv_events_percentage) - (card_reqs_quants['event'] if 'event' in card_reqs_quants.index else 0))
if(events_to_include % 2 == 1):
events_to_include+=1
skills_to_include = deck_size - assets_to_include - events_to_include
card_cycles_pool = analysed_cards.drop(card_reqs.set_index('code_str').index, errors='ignore')
card_cycles_pool = filter_cards_in_collection(card_cycles_pool)
card_cycles_pool.loc[:,'xp'] = pd.to_numeric(card_cycles_pool['xp'], errors='coerce')
card_pool = cards_valid_for_investigator(card_cycles_pool, inv_card_deck.deck_options, max_faction_selected, [max_faction_1, max_faction_2])
card_pool = card_pool.sort_values(['presence','synergy'],ascending=False)
card_pool_xp = card_pool[card_pool['xp']>0]
card_pool = card_pool[card_pool['xp']==0]
exclusion_cards = ['In the Thick of It', 'Underworld Support']
card_pool = card_pool[~(card_pool['name'].isin(exclusion_cards))]
assets_card_pool = card_pool[card_pool['type_code']=='asset']
assets_card_pool.loc[:, 'cumsum_deck_limit'] = assets_card_pool['deck_limit'].cumsum()
events_card_pool = card_pool[card_pool['type_code']=='event']
events_card_pool.loc[:, 'cumsum_deck_limit'] = events_card_pool['deck_limit'].cumsum()
skills_card_pool = card_pool[card_pool['type_code']=='skill']
skills_card_pool.loc[:, 'cumsum_deck_limit'] = skills_card_pool['deck_limit'].cumsum()
assets = assets_card_pool[assets_card_pool['cumsum_deck_limit']<=assets_to_include]
events = events_card_pool[events_card_pool['cumsum_deck_limit']<=events_to_include]
skills = skills_card_pool[skills_card_pool['cumsum_deck_limit']<=skills_to_include]
average_deck = skills.append(assets.append(events))
average_deck.loc[:,'amount'] = average_deck['deck_limit']
# check deck size
final_deck_size = average_deck['amount'].sum()
while final_deck_size < deck_size:
new_card_pool = card_pool.drop(average_deck.index, errors='ignore').sort_values(['presence','synergy'], ascending=False)
if new_card_pool.empty:
break
new_card_pool.loc[:,'cumsum_deck_limit'] = new_card_pool['deck_limit'].cumsum()
next_card_to_include = new_card_pool.head(1)
if (final_deck_size - deck_size) < next_card_to_include['deck_limit'][0]:
next_card_to_include['amount'] = deck_size - final_deck_size
inclusions_to_deck = next_card_to_include
else:
inclusions_to_deck = new_card_pool[new_card_pool['cumsum_deck_limit']<(final_deck_size - deck_size)]
inclusions_to_deck.loc[:,'amount'] = inclusions_to_deck['deck_limit']
average_deck = average_deck.append(inclusions_to_deck)
final_deck_size = average_deck['amount'].sum()
if investigator['name'][0] in bonus_experience:
xp_cards_to_include = pd.DataFrame()
total_xp_to_include = bonus_experience[investigator['name'][0]]
xp_to_include = total_xp_to_include
# Get xp cards to include
while True:
if card_pool_xp.empty:
break
card_pool_xp.loc[:, 'cumsum_deck_limit'] = card_pool_xp['deck_limit'].cumsum()
card_pool_xp.loc[:, 'total_xp'] = card_pool_xp['deck_limit'] * card_pool_xp['xp']
card_pool_xp.loc[card_pool_xp['myriad']==1, 'total_xp'] = card_pool_xp.loc[card_pool_xp['myriad']==1,'xp']
card_pool_xp.loc[card_pool_xp['exceptional']==1, 'total_xp'] = 2*card_pool_xp.loc[card_pool_xp['exceptional']==1,'total_xp']
card_pool_xp.loc[:, 'cumsum_xp'] = card_pool_xp['total_xp'].cumsum()
if card_pool_xp.head(1)['xp'][0] > xp_to_include:
card_pool_xp = card_pool_xp.drop(card_pool_xp.head(1).index)
elif card_pool_xp.head(1)['cumsum_xp'][0] > xp_to_include:
xp_cards = card_pool_xp.head(1)
card_pool_xp = card_pool_xp.drop(xp_cards.index)
xp_cards.loc[:,'amount'] = math.floor(xp_to_include / xp_cards['xp'])
xp_cards_to_include = xp_cards_to_include.append(xp_cards)
else:
xp_cards = card_pool_xp[card_pool_xp['cumsum_xp']<xp_to_include]
card_pool_xp = card_pool_xp.drop(xp_cards.index)
xp_cards.loc[:,'amount'] = xp_cards['deck_limit']
xp_cards_to_include = xp_cards_to_include.append(xp_cards)
xp_cards_to_include.loc[:,'total_xp'] = xp_cards_to_include['amount'] * xp_cards_to_include['xp']
included_xp = xp_cards_to_include['total_xp'].sum()
xp_to_include = total_xp_to_include - included_xp
if xp_to_include <= 0:
break
if not xp_cards_to_include.empty:
# Exclude least similar 0xp cards
number_of_cards_to_include = xp_cards_to_include['amount'].sum()
average_deck = average_deck.sort_values('presence')
average_deck.loc[:,"cumsum_amount"] = average_deck['amount'].cumsum()
number_of_cards_to_exclude = number_of_cards_to_include
while True:
if average_deck.head(1)['cumsum_amount'][0] > number_of_cards_to_exclude:
average_deck.at[average_deck.head(1).index[0], 'amount'] = average_deck.head(1)['amount']-number_of_cards_to_exclude
else:
average_deck = average_deck[average_deck['cumsum_amount']>number_of_cards_to_exclude]
number_of_cards_to_exclude = average_deck['amount'].sum()+number_of_cards_to_include-deck_size
if average_deck['amount'].sum() <= deck_size - number_of_cards_to_include:
break
average_deck = average_deck.append(xp_cards_to_include)
average_deck.sort_values(['type_code','presence'])
average_deck['color'] = average_deck['faction_code']
average_deck['total_xp'] = average_deck['amount'] * average_deck['xp']
average_deck.loc[average_deck['faction2_code']!="-",'color']='multi'
average_deck = average_deck.sort_values('type_code')
return [average_deck, card_reqs]
def cards_valid_for_investigator(card_cycles_pool, deck_options, single_faction_selected='', multi_faction_selected=[], apply_limits=True):
import pandas as pd
card_pools=[]
for do in deck_options:
if 'faction' in do and 'level' in do and 'limit' not in do:
restriction_pool = card_cycles_pool[(card_cycles_pool['faction_code'].isin(do['faction'])) & (card_cycles_pool['xp'].isin(range(do['level']['min'], do['level']['max']+1)))]
card_pools.append(restriction_pool)
# Mark main factions to define factions for Dunwich splash
main_factions = do['faction']
elif 'faction' in do and 'level' in do and 'limit' in do:
restriction_pool = card_cycles_pool[(card_cycles_pool['faction_code'].isin(do['faction'])) & card_cycles_pool['xp'].isin(range(do['level']['min'], do['level']['max']+1))]
if apply_limits:
restriction_pool = restriction_pool.sort_values('presence', ascending=False).head(do['limit'])
card_pools.append(restriction_pool)
# filter_limits.append({'factions': do['faction'], 'level': do['level'], 'limit': do['limit']})
elif 'level' in do and 'faction' not in do and 'limit' in do:
factions = ['guardian', 'mystic', 'seeker', 'rogue', 'survivor', 'neutral']
filter_classes = factions
for f in main_factions:
filter_classes.remove(f)
restriction_pool = card_cycles_pool[((card_cycles_pool['faction_code'].isin(filter_classes)) | (card_cycles_pool['faction2_code'].isin(filter_classes)) | (card_cycles_pool['faction3_code'].isin(filter_classes)) ) & card_cycles_pool['xp'].isin(range(do['level']['min'], do['level']['max']+1))]
if apply_limits:
restriction_pool = restriction_pool.sort_values('presence', ascending=False).head(do['limit'])
card_pools.append(restriction_pool)
elif 'name' in do:
if do['name'] == 'Secondary Class':
restriction_pool = card_cycles_pool[((card_cycles_pool['faction_code'] == single_faction_selected)| (card_cycles_pool['faction2_code'] == single_faction_selected) | (card_cycles_pool['faction3_code'] == single_faction_selected) ) & (card_cycles_pool['xp'].isin(range(do['level']['min'], do['level']['max']+1))) & (card_cycles_pool['type_code'].isin(do['type']))]
if 'limit' in do and 'type' in do:
restriction_pool = restriction_pool[restriction_pool["type_code"]==do['type']]
if(apply_limits):
restriction_pool = restriction_pool.sort_values('presence', ascending=False).head(do['limit'])
elif 'limit' in do and 'type' not in do:
if(apply_limits):
restriction_pool = restriction_pool.sort_values('presence', ascending=False).head()
card_pools.append(restriction_pool)
elif do['name'] == "Class Choice":
if do['id'] == 'faction_1':
restriction_pool = card_cycles_pool[((card_cycles_pool['faction_code'] == multi_faction_selected[0]) | (card_cycles_pool['faction2_code'] == multi_faction_selected[0]) | (card_cycles_pool['faction3_code'] == multi_faction_selected[0]) ) & (card_cycles_pool['xp'].isin(range(do['level']['min'], do['level']['max']+1)))]
elif do['id'] == 'faction_2':
restriction_pool = card_cycles_pool[((card_cycles_pool['faction_code'] == multi_faction_selected[1]) | (card_cycles_pool['faction2_code'] == multi_faction_selected[1]) | (card_cycles_pool['faction3_code'] == multi_faction_selected[1]) )& (card_cycles_pool['xp'].isin(range(do['level']['min'], do['level']['max']+1)))]
card_pools.append(restriction_pool)
card_pool = pd.concat(card_pools)
card_pool = card_pool.loc[card_pool.astype(str).drop_duplicates().index]
card_pool.loc[:,'deck_limit'] = pd.to_numeric(card_pool['deck_limit'], errors='coerce')
card_pool = card_pool.drop_duplicates(subset=['code'])
return card_pool
def remove_duplicates_from_deck(deck_to_compare):
duplicates = get_duplicates_unique_code()
analysed_card_codes = get_analysed_card_frequencies()
duplicates_in_deck = duplicates.loc[list((set(deck_to_compare['slots'][0].keys()) & set(duplicates.index)))]
deck_to_compare_sub = deck_to_compare.copy()
deck_to_compare_sub.loc[:,'slots'][0] = {duplicates_in_deck.loc[k]['unique_code'] if k in duplicates_in_deck.index else k:v for k,v in deck_to_compare['slots'][0].items()}
deck_to_compare_clean = deck_to_compare_sub.copy()
deck_to_compare_clean.loc[:,'slots'][0] = {card: value for (card,value) in deck_to_compare_sub['slots'][0].items() if card in analysed_card_codes.index}
return [deck_to_compare_clean, deck_to_compare_sub]
def get_recommendations_for_deck(deck_to_compare):
card_cooc = get_card_cooccurrences()
all_cards = get_all_cards()
inv_cooc = get_card_investigator_cooccurrences()
[deck_to_compare_clean, deck_to_compare] = remove_duplicates_from_deck(deck_to_compare)
# Fetch the jaccard scores for the cards in the deck
idx =pd.IndexSlice
c1 = card_cooc.loc[idx[list(deck_to_compare_clean['slots'][0].keys()),:],:].reorder_levels(['card2', 'card1'])
c1.index.set_names(['card1', 'card2'], inplace=True)
c2 = card_cooc.loc[idx[:,list(deck_to_compare_clean['slots'][0].keys())],:]
c = pd.concat([c1, c2])
# Sum the jaccard scores for each card of the deck
recommendations = c.loc[~c.index.duplicated()].groupby('card1')['jaccard'].sum()
# Get presence in investigator
presence_in_investigators = inv_cooc.loc[str(deck_to_compare['investigator_code'][0]).zfill(5),:]
presence_in_investigators.loc[:,'Presence'] = presence_in_investigators['presence'].dropna().apply(lambda x: "{:0.0%}".format(x))
# See possible inclusions (drops cards already in deck)
cards_not_in_deck = recommendations.drop(deck_to_compare_clean['slots'][0].keys()).to_frame('jaccard')
cards_not_in_deck.loc[:,'jaccard'] = cards_not_in_deck.applymap(lambda x: "{:0.2f}".format(x))
cards_not_in_deck = cards_not_in_deck.join(all_cards[['code_str','name', 'pack_code', 'faction_code', 'faction2_code', 'faction3_code','slot','type_code','xp']].set_index('code_str'))
# Keeps only assets, events and skills (removes treacheries, enemies, locations, ...)
cards_not_in_deck = cards_not_in_deck[cards_not_in_deck['type_code'].isin(['asset','event', 'skill'])][['name', 'pack_code', 'faction_code', 'faction2_code', 'faction3_code','slot','type_code', 'xp', 'jaccard']]
presence_cards_not_in_deck = presence_in_investigators[~presence_in_investigators.index.isin(deck_to_compare['slots'][0].keys())].join(all_cards[['code_str','name', 'pack_code', 'faction_code', 'faction2_code', 'faction3_code','slot','type_code', 'xp']].set_index('code_str'))
cards_not_in_deck = cards_not_in_deck.join(presence_cards_not_in_deck['Presence'])
# Removes cards not allowed for deck
# Gets deck options (if applicable, e.g. off-class faction choice)
m = deck_to_compare.meta[0]
ms=['','']
fs=[]
if m:
m = ast.literal_eval(m)
if 'faction_selected' in m:
fs = m['faction_selected']
if 'faction_1' in m:
ms[0] = m['faction_1']
if 'faction_2' in m:
ms[1] = m['faction_2']
investigator_card = all_cards.set_index('code_str').loc[str(deck_to_compare['investigator_code'][0]).zfill(5)]
allowed_card_pool = cards_valid_for_investigator(all_cards, investigator_card.deck_options, single_faction_selected=fs, multi_faction_selected=ms, apply_limits=False).set_index('code_str')
cards_not_in_deck = cards_not_in_deck.loc[cards_not_in_deck.index & allowed_card_pool.index]
# Prepares for view
cards_not_in_deck = arkhrec.general_helpers.set_color(cards_not_in_deck)
cards_not_in_deck = arkhrec.general_helpers.convert_xp_to_str(cards_not_in_deck)
cards_not_in_deck = cards_not_in_deck.fillna("-")
cards_not_in_deck['cycle'] = cards_not_in_deck.apply(arkhrec.general_helpers.set_cycle, axis=1)
cards_not_in_deck = filter_cards_in_collection(cards_not_in_deck)
# Gets jaccard score and presence for cards in deck
cards_in_deck = recommendations[deck_to_compare_clean['slots'][0].keys()].to_frame('jaccard')
cards_in_deck.loc[:,'jaccard'] = cards_in_deck.applymap(lambda x: "{:0.2f}".format(x))
presence_cards_in_deck = presence_in_investigators[presence_in_investigators.index.isin(deck_to_compare['slots'][0].keys())].join(all_cards[['code_str','name','pack_code', 'faction_code']].set_index('code_str')).sort_values(by=presence_in_investigators.columns[0],ascending=True)
cards_in_deck = pd.DataFrame.from_dict(
deck_to_compare.loc[:,'slots'][0], orient='index', columns=['count']).join(
all_cards[['code_str','name', 'pack_code', 'faction_code', 'faction2_code', 'faction3_code','slot','type_code', 'xp', 'myriad', 'exceptional']].set_index('code_str')).join(
presence_cards_in_deck[['Presence']]).join(
cards_in_deck[['jaccard']])
# Prepares for view
cards_in_deck = arkhrec.general_helpers.set_color(cards_in_deck)
cards_in_deck = arkhrec.general_helpers.convert_xp_to_str(cards_in_deck)
cards_in_deck = cards_in_deck.fillna("-")
cards_in_deck['cycle'] = cards_in_deck.apply(arkhrec.general_helpers.set_cycle, axis=1)
return [cards_in_deck, cards_not_in_deck, deck_to_compare]
def calculate_deck_statistics(deck_to_compare):
all_cards = get_all_cards()
deck_to_compare_with_info = pd.DataFrame.from_dict(deck_to_compare['slots'][0],orient='index').join(
all_cards[['code_str','name','type_code','cost',"skill_willpower", "skill_agility", "skill_combat", "skill_intellect", "skill_wild", "slot"]].set_index(
'code_str'))
deck_to_compare_with_info.loc[:,['skill_willpower','skill_agility', 'skill_combat', 'skill_intellect', 'skill_wild']]=deck_to_compare_with_info[['skill_willpower','skill_agility', 'skill_combat', 'skill_intellect', 'skill_wild']].multiply(deck_to_compare_with_info[0],axis='index')
pips_sum = deck_to_compare_with_info[['skill_willpower','skill_agility', 'skill_combat', 'skill_intellect', 'skill_wild']].sum()
slots_count = deck_to_compare_with_info.groupby('slot')[0].sum()
type_distribution = deck_to_compare_with_info.groupby('type_code')[0].sum()
type_distribution = type_distribution / type_distribution.sum()
deck_to_compare_with_info['w_costs']=deck_to_compare_with_info['cost'] * deck_to_compare_with_info[0]
mean_cost = deck_to_compare_with_info[~deck_to_compare_with_info.cost.isnull()]['w_costs'].sum() / deck_to_compare_with_info[~deck_to_compare_with_info.cost.isnull()][0].sum()
assets_percentage = type_distribution['asset'] if 'asset' in type_distribution.index else 0
skills_percentage = type_distribution['skill'] if 'skill' in type_distribution.index else 0
events_percentage = type_distribution['event'] if 'event' in type_distribution.index else 0
skill_willpower = pips_sum['skill_willpower'] if 'skill_willpower' in pips_sum.index else 0
skill_combat = pips_sum['skill_combat'] if 'skill_combat' in pips_sum.index else 0
skill_intellect = pips_sum['skill_intellect'] if 'skill_intellect' in pips_sum.index else 0
skill_agility = pips_sum['skill_agility'] if 'skill_agility' in pips_sum.index else 0
skill_wild = pips_sum['skill_wild'] if 'skill_wild' in pips_sum.index else 0
slots_count = slots_count.index * slots_count
slots_count = slots_count.str.cat().replace("Hand x2", "HandHand").replace("Arcane x2", "ArcaneArcane").replace("Accessory x2", "AccessoryAccessory").replace("Body x2", "BodyBody").replace("Ally x2", "AllyAlly")
hand_slot = slots_count.count("Hand")
arcane_slot = slots_count.count("Arcane")
accessory_slot = slots_count.count("Accessory")
body_slot = slots_count.count("Body")
ally_slot = slots_count.count("Ally")
investigator = get_all_investigators().loc[str(int(deck_to_compare['investigator_code'])).zfill(5)].to_frame().transpose()
investigator_deck_statistics = get_investigator_deck_statistics(investigator)
deck_statistics = {
'mean_cost': mean_cost,
'assets_percentage': assets_percentage*100,
'skills_percentage': skills_percentage*100,
'events_percentage': events_percentage*100,
'hand_slot': hand_slot,
'arcane_slot': arcane_slot,
'body_slot': body_slot,
'accessory_slot': accessory_slot,
'ally_slot': ally_slot,
'skill_willpower': skill_willpower,
'skill_agility': skill_agility,
'skill_combat': skill_combat,
'skill_intellect': skill_intellect,
'skill_wild': skill_wild,
'inv_mean_cost': investigator_deck_statistics['inv_mean_cost'],
'inv_assets_percentage': investigator_deck_statistics['inv_assets_percentage'],
'inv_events_percentage': investigator_deck_statistics['inv_events_percentage'],
'inv_skills_percentage': investigator_deck_statistics['inv_skills_percentage'],
'inv_hand_slot': investigator_deck_statistics['inv_hand_slot'],
'inv_arcane_slot': investigator_deck_statistics['inv_arcane_slot'],
'inv_body_slot': investigator_deck_statistics['inv_body_slot'],
'inv_accessory_slot': investigator_deck_statistics['inv_accessory_slot'],
'inv_ally_slot': investigator_deck_statistics['inv_ally_slot'],
'inv_skill_willpower': investigator_deck_statistics['inv_skill_willpower'],
'inv_skill_agility': investigator_deck_statistics['inv_skill_agility'],
'inv_skill_combat': investigator_deck_statistics['inv_skill_combat'],
'inv_skill_intellect': investigator_deck_statistics['inv_skill_intellect'],
'inv_skill_wild': investigator_deck_statistics['inv_skill_wild']
}
return deck_statistics
def get_deck_info(deck_to_compare, cards_in_deck):
all_decks = get_all_decks()
deck_info =deck_to_compare[['investigator_name', 'investigator_code', 'name', 'taboo_id', 'date_creation', 'date_update', 'xp']].to_dict(orient='index')[0]
deck_info['investigator_code'] = str(deck_info['investigator_code']).zfill(5)
deck_info['date_creation'] = deck_info['date_creation'][0:10]
deck_info['date_update'] = deck_info['date_update'][0:10]
cards_in_deck['total_xp'] = cards_in_deck['xp'] * cards_in_deck['count']
cards_in_deck.loc[cards_in_deck['myriad']==1, 'total_xp'] = cards_in_deck.loc[cards_in_deck['myriad']==1,'xp']
cards_in_deck.loc[cards_in_deck['exceptional']==1, 'total_xp'] = 2*cards_in_deck.loc[cards_in_deck['exceptional']==1,'total_xp']
deck_info['xp'] = "{:0.0f}".format(cards_in_deck[(cards_in_deck['total_xp']!='-') & (cards_in_deck['total_xp']!='----') & (cards_in_deck['total_xp']!='')]['total_xp'].astype(int).sum())
deck_info['total_cards'] = cards_in_deck['count'].sum()
deck_info['inv_deck_count'] = all_decks[all_decks['investigator_name']==deck_to_compare['investigator_name'][0]].count()[0]
return deck_info