-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest.ml
1395 lines (1258 loc) · 46.4 KB
/
test.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
open Compile
open Runner
open Printf
open OUnit2
open ExtLib
open Types
open Expr
open Pretty
open Optimize
let is_osx = Conf.make_bool
"osx"
(let ic = Unix.open_process_in "uname" in
let uname = input_line ic in
let () = close_in ic in
uname = "Darwin")
"Set this flag to run on osx";;
let t name program expected =
(* Check types by default. *)
name>::test_run [] program name expected true;;
let tgc name heap_size program expected =
(* We disable type-checking for gc tests to allow for cyclic structures. *)
name>::test_run [string_of_int heap_size] program name expected false;;
let tvg name program expected = name>::(fun test_ctx ->
skip_if (is_osx test_ctx) "Valgrind not supported on newer OSX versions";
test_run_valgrind [] program name expected true test_ctx)
let tvgc name heap_size program expected = name>::(fun test_ctx ->
skip_if (is_osx test_ctx) "Valgrind not supported on newer OSX versions";
test_run_valgrind [string_of_int heap_size] program name expected false test_ctx);;
let terr name program expected =
name>::test_err [] program name expected true ;;
let tgcerr name heap_size program expected =
name>::test_err [string_of_int heap_size] program name expected false;;
let tfvs name program expected = name>::
(fun _ ->
let ast = parse_string name program in
let anfed = anf (tag ast) in
let vars = free_vars anfed in
let c = Pervasives.compare in
let str_list_print strs = "[" ^ (ExtString.String.join ", " strs) ^ "]" in
assert_equal (List.sort ~cmp:c vars) (List.sort ~cmp:c expected) ~printer:str_list_print)
module StringMap = Map.Make(String)
let tewf name program expected_errs = name>::(fun _ ->
let count_substring str sub =
(* https://www.rosettacode.org/wiki/Count_occurrences_of_a_substring#OCaml *)
let sub_len = String.length sub in
let len_diff = (String.length str) - sub_len
and reg = Str.regexp_string sub in
let rec aux i n =
if i > len_diff then n else
try
let pos = Str.search_forward reg str i in
aux (pos + sub_len) (succ n)
with Not_found -> n
in
aux 0 0 in
let expected_counts = List.fold_left
(fun acc err ->
if StringMap.mem err acc
then StringMap.add err (1 + StringMap.find err acc) acc
else StringMap.add err 1 acc)
StringMap.empty
expected_errs in
let prog_errs = print_errors (well_formed (parse_string "" program) [] true) in
let concat_errs = String.concat "\n" prog_errs in
let actual_counts =
StringMap.mapi (fun err _ -> count_substring concat_errs err) expected_counts in
let diff_printer = (fun fmt _ ->
Format.fprintf fmt
"Expected errors: %s\nActual errors: %s"
("[\"" ^ (String.concat "\",\"" expected_errs) ^ "\"]")
concat_errs) in
(assert_equal (List.length expected_errs)
(List.length prog_errs)
~pp_diff:diff_printer);
(assert_equal expected_counts
actual_counts
~cmp:(StringMap.equal (fun x y -> x = y))
~pp_diff:diff_printer))
let topt name program expected run_cf run_cse run_dae = name>::(fun _ ->
let optimized =
(* Skips well-formedness checking for simplicity. *)
optimize (atag (anf (tag (parse_string "" program)))) false run_cf run_cse run_dae in
let anfed_expected =
(atag (anf (tag (parse_string "" expected)))) in
assert_equal anfed_expected optimized ~printer:string_of_aprogram)
let tpe name program (exp_impures : string list) = name>::
(fun _ ->
let ast = parse_string name program in
let anfed = anf (tag ast) in
let pe = purity_env (atag anfed) in
let impures = Hashtbl.fold (fun x pure acc -> if pure then acc else x::acc) pe [] in
let c = Pervasives.compare in
let str_list_print strs = "[" ^ (ExtString.String.join ", "strs) ^ "]" in
assert_equal (List.sort ~cmp:c exp_impures)
(List.sort ~cmp:c impures) ~printer:str_list_print)
;;
let tcf name program expected = topt name program expected true false false
let tcse name program expected = topt name program expected false true false
let tdae name program expected = topt name program expected false false true
(* Utility to generate both a "normal" and a valgrind test for a function call. *)
let test_funcall name declblock body expected =
let test_prog = (sprintf "%s\n%s" declblock body) in
[
t name test_prog expected;
tvg (name ^ "_valgrind") test_prog expected;
];;
(* Utility to generate both a "normal" and a valgrind test for a gc run. *)
let test_gc name mem body expected =
[
tgc name mem body expected;
tvgc (name ^ "_valgrind") mem body expected;
];;
let tterr = (fun name prog -> terr name prog "Type error");;
let imm_tests = [
t "forty" "40" "40";
t "fals" "false" "false";
t "tru" "true" "true";
tewf "unbound_id" "x" ["not in scope"];
];;
let alloc_tests = [
t "tup1" "(5, 7, 8)" "(5, 7, 8)";
t "tup2" "(true, 7, false, 8)" "(true, 7, false, 8)";
t "func1" "(lambda: 1)" "<function>";
t "func2" "(lambda x: x)" "<function>";
tewf "unbound_in_tup1" "(true, y)" ["not in scope"];
tewf "unbound_in_tup2" "(z, someFun())" ["not in scope"; "not in scope"];
];;
let prim1_tests = [
t "print_num" "print(9)" "9\n9";
t "print_true" "print(true)" "true\ntrue";
t "print_false" "print(false)" "false\nfalse";
t "print_tuple1" "print((1, 2))" "(1, 2)\n(1, 2)";
t "print_tuple2" "print((1, (2, 3)))" "(1, (2, 3))\n(1, (2, 3))";
t "print_func" "print((lambda: 1))" "<function>\n<function>";
t "add1" "add1(10)" "11";
t "sub1" "sub1(11)" "10";
t "not_false" "!(false)" "true";
t "not_true" "!(true)" "false";
t "isnum_num" "isnum(5)" "true";
t "isnum_bool" "isnum(true)" "false";
t "isnum_tup" "isnum((1, 2))" "false";
t "isnum_func" "isnum((lambda: 1))" "false";
t "isbool_num" "isbool(10)" "false";
t "isbool_bool" "isbool(false)" "true";
t "isbool_tup" "isbool((1, 2))" "false";
t "isbool_func" "isbool((lambda: 1))" "false";
t "istuple_num" "istuple(10)" "false";
t "istuple_bool" "istuple(false)" "false";
t "istuple_tup" "istuple((1, 2))" "true";
t "istuple_func" "istuple((lambda: 1))" "false";
t "add1_sub1" "add1(sub1(2))" "2";
t "sub1_add1" "sub1(add1(2))" "2";
t "add1_print" "add1(print(9))" "9\n10";
t "sub1_print" "sub1(print(9))" "9\n8";
t "not_print" "!(print(false))" "false\ntrue";
t "print_print" "print(print(10))" "10\n10\n10";
t "print_add1" "print(add1(9))" "10\n10";
t "print_sub1" "print(sub1(9))" "8\n8";
t "print_not" "print(!(true))" "false\nfalse";
tterr "add1_true" "add1(true)";
tterr "add1_false" "add1(false)";
tterr "sub1_true" "sub1(true)";
tterr "sub1_false" "sub1(false)";
tterr "add1_tup" "add1((1, 2))";
tterr "sub1_tup" "sub1((1, 2, (1, 2), 4))";
tterr "add1_func" "add1((lambda: 1))";
tterr "sub1_func" "sub1((lambda: 1))";
tterr "not_num" "!(10)";
tterr "not_tup" "!((1, 2))";
tterr "not_func" "!((lambda: 1))";
];;
let prim2_tests = [
t "plus" "40 + 50" "90";
t "minus" "60 - 25" "35";
t "times" "12 * 5" "60";
tterr "add_bool1" "true + 5";
tterr "add_bool2" "6 + false";
tterr "add_bool3" "false + true";
tterr "mul_bool1" "(-5) * true";
tterr "mul_bool2" "9 * true";
tterr "sub_bool1" "true - false";
tterr "add_tup1" "9 + (2, 4)";
tterr "add_tup2" "(1, 6) + (false, 4)";
tterr "sub_tup1" "(true, false) - 10";
tterr "sub_tup2" "(1, 2, 3) - (0, 1, 2)";
tterr "mul_tup1" "3 * (1, 2, 3)";
tterr "add_func" "5 + (lambda: 1)";
tterr "sub_func" "(lambda: 1) - 3";
tterr "mul_func" "(lambda: 1) * (lambda: 1)";
terr "sub1_overflow" "sub1(-1073741824)" "overflow";
terr "add1_overflow" "add1(1073741823)" "overflow";
terr "plus_overflow" "773741823 + 773741829" "overflow";
terr "times_overflow" "773741823 * 773741829" "overflow";
terr "sub_overflow" "773741823 - (-773741829)" "overflow";
t "and1" "true && false" "false";
t "and2" "true && true" "true";
t "and3" "false && false" "false";
t "and4" "false && true" "false";
t "or1" "true || false" "true";
t "or2" "true || true" "true";
t "or3" "false || false" "false";
t "or4" "false || true" "true";
t "print_or" "print(true || false)" "true\ntrue";
t "or_print1" "print(true) || false" "true\ntrue";
t "or_print2" "true || print(false)" "false\ntrue";
tterr "and_num1" "true && 8";
tterr "and_num2" "8 && false";
tterr "and_num3" "false && 2";
tterr "and_num4" "-5 && true";
tterr "and_num5" "9 && 0";
tterr "or_num1" "true || 9";
tterr "or_num2" "0 || false";
tterr "or_num3" "false || -6";
tterr "or_num4" "2 || true";
tterr "or_num5" "9 || 20";
tterr "or_num6" "true && (9, 8)";
tterr "and_tup1" "(1, 2) && 20";
tterr "and_tup2" "(1, 2) && (7, 8)";
tterr "or_tup1" "true || (true, true)";
tterr "or_tup2" "9 || (9, false)";
tterr "or_tup3" "(6, true, false) || (6, 7, 8, 9)";
tterr "and_func" "(lambda: 1) && true";
tterr "or_func" "false || (lambda: 1)";
t "gt1" "15 > -9" "true";
t "gt2" "5 > 9" "false";
t "gt3" "5 > 5" "false";
t "gte1" "14 >= 7" "true";
t "gte2" "4 >= 9" "false";
t "gte3" "7 >= 7" "true";
t "lt1" "14 < 7" "false";
t "lt2" "-4 < 9" "true";
t "lt3" "7 < 7" "false";
t "lte1" "13 <= 6" "false";
t "lte2" "-4 <= 5" "true";
t "lte" "2 <= 2" "true";
t "eq1" "2 == 2" "true";
t "eq2" "2 == -3" "false";
t "eq3" "6 == 9" "false";
t "eq4" "true == true" "true";
t "eq5" "true == false" "false";
t "eq6" "true == 8" "false";
t "eq7" "false == true" "false";
t "eq8" "false == -2" "false";
t "eq9" "false == false" "true";
t "eq10" "(1, 2) == (1, 2)" "false";
t "eq11" "(1, 2) == 3" "false";
t "eq12" "false == (1, 2)" "false";
t "eq13" "(lambda: 1) == (lambda: 1)" "false";
t "eq14" "(lambda: 1) == true" "false";
t "eq15" "-5 == (lambda: 1)" "false";
t "eq16" "(1, 2, 3) == (lambda: 1)" "false";
t "ref_equality_tup" "let t = (1, 2) in t == t" "true";
t "ref_equality_func" "let f = (lambda: 1) in f == f" "true";
tterr "gte_bool1" "true >= 5";
tterr "gte_bool2" "false >= false";
tterr "lt_bool1" "true < 8";
tterr "lt_bool2" "5 < false";
tterr "lt_bool3" "true < true";
tterr "gt_bool1" "false > 19";
tterr "gt_bool2" "true > false";
tterr "lte_bool1" "false <= -12";
tterr "lte_bool2" "5 <= true";
tterr "lte_bool3" "false <= true";
tterr "gte_tup" "5 >= (9, 8)";
tterr "gt_tup" "2 > (1, 5, true)";
tterr "lt_tup" "(1, 2, false) < 10";
tterr "lte_tup" "(3, 4, 5) <= 76";
tterr "lt_tup_bool" "(1, 2) < false";
tterr "gte_func" "10 >= (lambda: 1)";
tterr "gt_func" "10 > (lambda: 1)";
tterr "lte_func" "(lambda: 1) <= 10";
tterr "lt_func" "(lambda: 1) < 10";
];;
let prim1_prim2_mix_tests = [
t "print_plus" "print(40 + 50)" "90\n90";
t "plus_print1" "print(40) + 50" "40\n90";
t "plus_print2" "40 + print(50)" "50\n90";
t "print_minus" "print(60 - 25)" "35\n35";
t "minus_print1" "print(60) - 25" "60\n35";
t "minus_print2" "60 - print(25)" "25\n35";
t "print_times" "print(12 * 5)" "60\n60";
t "times_print1" "print(12) * 5" "12\n60";
t "times_print2" "12 * print(5)" "5\n60";
t "print_and" "print(true && false)" "false\nfalse";
t "and_print1" "print(true) && false" "true\nfalse";
t "and_print2" "true && print(false)" "false\nfalse";
t "print_eq" "print(10) == print(true)" "10\ntrue\nfalse";
t "complex1"
"(let x = 10 in print(sub1(x))) + (let x = 9, y = 11 in print(x * y))"
"9\n99\n108";
];;
let if_tests = [
t "if1" "if true: 10 else: 5" "10";
t "if2" "if false: 3 else: 4" "4";
t "if3" "if (5 < 4): false else: true" "true";
t "if4" "if (1 == true): 7 else: (9 * 2)" "18";
t "nested_if" "if false: 10 else: if true: 9 else: 8" "9";
tterr "cond_not_bool1" "if 8: 6 else: 7";
tterr "cond_not_bool2" "if (true, false): 6 else: 7";
tterr "cond_not_bool3" "if (lambda: true): 6 else: 7";
tterr "mismatched_branch_types1" "if isbool(10): true else: 10";
tterr "mismatched_branch_types2" "(lambda x: if (isbool(x)): !(x) else: (-1 * x))";
tterr "mismatched_branch_types3" "if isnum(10): print(8) else: print(false)";
];;
let tup_access_tests = [
t "tup_get1" "(1, 2, 3)[0]" "1";
t "tup_get2" "(1, 2, 3)[2]" "3";
t "tup_get_exact" "(1, (2, 3), 4)[:1:]" "(2, 3)";
t "tup_set1" "let t = (4, 5, 6) in
begin
t[0] := 7;
t
end" "(7, 5, 6)";
t "tup_set2" "let t = ((1, 2), (2, 3)) in
begin
t[1] := (4, 5);
t
end" "((1, 2), (4, 5))";
t "tup_set_exact" "let t = (1, (2, 3), 4) in
begin
t[:1:] := (5, 6);
t
end" "(1, (5, 6), 4)";
tterr "access_int" "1[0]";
tterr "access_bool" "true[1]";
tterr "access_fun" "(lambda: 1)[0]";
tterr "index_bool" "(1, 2)[false]";
tterr "index_tup" "(1, 2)[(0, 1)]";
tterr "index_fun" "(1, 2)[(lambda: 1)]";
tterr "set_int" "1[0] := 2";
tterr "set_bool" "false[1] := true";
tterr "set_func" "(lambda: 1)[2] := 3";
(* Using inexact indices prevents useful type inference for heterogenous tuples. *)
tterr "add_access_maybe_not_int" "(1, (2, 5), 3)[0] + 5";
tterr "or_access_maybe_not_bool" "(false, true, 0)[1] || false";
tterr "double_access_maybe_not_tup" "(1, (2, 5), 3)[1][1]";
tterr "call_access_maybe_not_func" "((lambda: 1), 3, (lambda: 2))[2]()";
(* But using exact indices enables inference. *)
t "add_exact_access" "(1, (2, 5), 3)[:0:] + 5" "6";
t "or_exact_access" "(false, true, 0)[:1:] || false" "true";
t "access_exact_access" "(1, (2, 5), 3)[:1:][1]" "5";
t "call_exact_access" "((lambda: 1), 3, (lambda: 2))[:2:]()" "2";
(* Setting can't overwrite types. *)
tterr "set_change_type1" "(1, 2)[0] := (3, 4)";
tterr "set_change_type2" "(true, false)[1] := 3";
(* And it doesn't work at all for heterogenous tuples and non-exact indexes. *)
tterr "set_heterogenous_non_exact" "(1, (2, 3))[0] := 1";
tterr "set_heterogenous_non_exact" "((lambda: 1), false)[1] := true";
(* Using non-exact get or set won't catch bad index values during type checking,
and the error will emerge at runtime. *)
terr "negative_index" "(1, 2)[-1]" "index too small";
terr "very_large_index" "(1, 2)[100000]" "index too large";
terr "off_by_one_index" "(1, 2)[2]" "index too large";
];;
let simple_funcall_tests = [
t "call_thunk" "(lambda: 1)()" "1";
t "call_id_num" "(lambda x: x)(1)" "1";
t "call_id_bool" "(lambda x: x)(true)" "true";
t "fun_returns_fun" "(lambda x: (lambda y: x - y))(7)(5)" "2";
tterr "call_num" "(5+7)(10)";
tterr "call_bool" "(false)(2)";
tterr "call_tup" "((1, 2, 3))(3)";
tterr "arity1" "(lambda x: x)(5, 6)";
tterr "arity2" "(lambda:7)(5, 6)";
tterr "arity3" "(lambda x, y: x+y)(5)";
tterr "arity4" "(lambda x, y, z: x)(5, 6)";
];;
let scope_tests = [
t "multi_let" "let x = 10, y = x in y" "10";
t "nested_let" "let x = 10 in let y = x in y" "10";
t "free_vars_lexical_scope"
"let f = (let x = 10 in (lambda: x)) in let x = 11 in f()"
"10";
tewf "dup_id" "let x = 10, x = 11 in x" ["duplicates"];
tewf "shadowed_id" "let x = 10 in let x = (lambda: 1) in x()" ["shadows"];
tewf "rec_func_normal_rec" "let f = (lambda: f()) in f()" ["not in scope"];
tewf "rec_non_func1" "let rec x = 10 in x" ["not bound to a function"];
tewf "rec_non_func2" "let rec f = (lambda: 1), x = f() in x" ["not bound to a function"];
tewf "mut_rec_func" "let rec x = (lambda: y()), y = (lambda: x()) in x()" [];
tewf "nested_let_rec" "let rec x = (lambda: y()) in let rec y = (lambda: x()) in x()" ["not in scope"];
];;
let type_annotation_tests = [
tewf "unbound_tyvar1" "let x : Y = 10 in x" ["type"];
tewf "unbound_tyvar2" "let x : [X] Y = 10 in x" ["type"];
tewf "unused_tyvar" "let x : [X] int = 10 in x" [];
tterr "wrong_annotation1" "let x : bool = 10 in x";
tterr "wrong_annotation2" "let x : (int -> bool) = 10 in x";
tterr "wrong_annotation3" "let x : (int, int) = 10 in x";
tterr "wrong_annotation4" "let x : int = true in x";
tterr "wrong_annotation5" "let x : int = (1, 2, 3) in x";
tterr "wrong_annotation6" "let x : (int -> int) = false in x";
tterr "wrong_annotation5" "let f : [X] (X -> bool) = (lambda x: 10) in f(true)";
];;
(*** Function bindings to use in many tests ***)
(* Sanity-check *)
let identity =
"let id = (lambda x: x) in
"
;;
(* Compute the sum of 0 to n *)
let sum =
"let sum = (lambda n:
let rec tail_sum = (lambda m, acc:
if (m == 0): acc
else: tail_sum(m - 1, acc + m)) in
tail_sum(n, 0)) in
"
;;
(* Compute factorial *)
let fact =
"let fact = (lambda n:
let rec tail_fact = (lambda m, acc:
if (m == 0): acc
else: tail_fact(m - 1, m * acc)) in
tail_fact(n, 1)) in
"
;;
(* Mutually recursive is-even and is-odd functions *)
let is_even_is_odd =
"let rec
is_even = (lambda n:
if (n == 0): true
else: is_odd(n - 1)),
is_odd = (lambda n:
if (n == 0): false
else: is_even(n - 1)) in
"
;;
(* Function to test that functions safely handle overwriting their
own arguments when preparing to make a function call *)
let try_to_munge_args =
"let try_munge_two = (lambda x, y:
if (x == y): true else: false) in
let try_munge = (lambda x, y:
# Depending on how the compiler handles copying arguments to tail-calls,
# the value for y might overwrite the value for x.
try_munge_two(y, x)) in
"
;;
(*
Inspired by the answer to my Piazza question about Valgrind:
https://piazza.com/class/ixi5udrwjfe2x2?cid=59
f and g take differing numbers of arguments, and swap their first two args
on each tail-call to one another. Eventually one of them calls h in a
non-tail position. Even with a huge number of recursive calls, this should
work fine.
*)
let fgh =
"let h = (lambda a, b, c, d, e:
# Print and return a
print(a)) in
let rec
f = (lambda x, y, z:
# If z is even, print x and return x+1 after z recursive calls
# Else print y and return y-1 after z recursive calls
if (z == 0): h(x, x, y, y, x * y) + 1
else: g(x, y, z - 1, 0)),
g = (lambda s, t, u, v:
# If u is even, print t and return t-1 after u recursive calls
# Else print s and return s+1 after u recursive calls
if (u == 0): h(t, s, u, v, s * t) - 1
else: f(s, t, u - 1)) in
"
;;
(* Function to test that making tail calls doesn't munge the local variables
of any call frames placed lower on the stack *)
let try_to_munge_lower_locals =
"let third = (lambda a, b, c, d, e, f:
print(f)) in
let second = (lambda y:
# Call third in tail position. It has many more arguments than this function,
# so if arbitrary tail-calls aren't implemented properly we'll either write
# above our call frame (if ESP isn't properly incremented) or munge the local
# vars of the call frame from which this function was called (if function args
# are placed below EBP instead of above it).
third(y, 2 * y, 3 * y, 4 * y, 5 * y, 6 * y)) in
let first = (lambda x:
# Call second in non-tail position. After ANF-ing, the result of (3 * 2)
# should be stored in a slot for local vars in first's call frame while
# the call to second evaluates.
(3 * 2) + second(print(x))) in
"
;;
(* Example testing capture of free variables within closure allocations *)
let capture_free_vars =
"let second = (lambda a, b:
(lambda c, d:
a(c) + d(b))) in
let first = (lambda:
second((lambda x: x + 5), (lambda y: y + 2))(5, (lambda z: z(12)))) in"
;;
let vg_funcall_tests = List.flatten [
test_funcall "id_10" identity "id(10)" "10";
test_funcall "id_polymorphic" identity "(id(10), id(true))" "(10, true)";
test_funcall "sum_0" sum "sum(0)" "0";
test_funcall "sum_20000" sum "sum(20000)" "200010000";
test_funcall "fact_0" fact "fact(0)" "1";
test_funcall "fact_10" fact "fact(10)" "3628800";
test_funcall "is_even_0" is_even_is_odd "is_even(0)" "true";
test_funcall "is_even_100000001" is_even_is_odd "is_even(100000001)" "false";
test_funcall "is_odd_0" is_even_is_odd "is_odd(0)" "false";
test_funcall "is_odd100000001" is_even_is_odd "is_odd(100000001)" "true";
test_funcall "try_munge_args" try_to_munge_args "try_munge(1, 2)" "false";
test_funcall "tail_rec_mismatched_nargs1" fgh "f(5, 6, 100000000)" "5\n6";
test_funcall "tail_rec_mismatched_nargs2" fgh "f(5, 6, 100000001)" "6\n5";
test_funcall "try_munge_lower_locals" try_to_munge_lower_locals "first(1)" "1\n6\n12";
test_funcall "capture_free_vars" capture_free_vars "first()" "24";
(* Example brought up by B.Lerner during office hours as a potential counter-example. *)
test_funcall "feel_the_blern" identity "let blerner_func = (lambda f, g, x:
let t = (f, g) in
t[0](t[1](x))) in
blerner_func(id, id, 10)" "10";
];;
let gc_tests = [
tgcerr "oomgc1" 7 "(1, (3, 4))" "Out of memory";
tgcerr "oomgc2" 3 "(3, 4)" "Allocation";
tgcerr "oomgc3" 1 "(lambda: 1)" "Allocation";
tgcerr "oomgc4" 3 "let x = 10 in (lambda: x)" "Allocation";
] @ List.flatten [
test_gc "gc_tup1" 4 "(3, 4)" "(3, 4)";
test_gc "gc_tup2" 8 "(1, (3, 4))" "(1, (3, 4))";
test_gc "gc_func1" 4 "(lambda: 1)" "<function>";
test_gc "gc_func2" 4 "(lambda x: x)" "<function>";
test_gc "gc_func3" 4 "let x = 10 in (lambda: x)" "<function>";
test_gc "gc4" 10
"let f = (lambda: (1, 2)) in
begin
f();
f();
f();
f()
end"
"(1, 2)";
test_gc "gc5" 12
"let f = (lambda: let t = (1, 2) in (t, t)) in
begin
f();
f();
f();
f()
end"
"((1, 2), (1, 2))";
test_gc "gc6" 12
"let f = (lambda:
let t = (1, (2, 3), 4) in
begin
t[:1:][1] := t[1];
t[2] := t;
t
end) in
begin
f();
f();
f();
f()
end"
"(1, (2, <cyclic tuple 2>), <cyclic tuple 1>)";
test_gc "gc7" 14
"let x = (2, 3, 4, 5) in
let f = (lambda n:
let t = (1, x, 4) in
begin
t[:1:][n] := t[1];
t[2] := t;
t
end) in
begin
f(0);
f(1);
f(2);
f(3);
x
end"
"(<cyclic tuple 1>, <cyclic tuple 1>, <cyclic tuple 1>, <cyclic tuple 1>)";
];;
let purity_tests = [
(* Numbers and booleans are always pure. *)
tpe "num_pure" "let x = 5 in x" [];
tpe "bool_pure" "let b = false in b" [];
(* Tuples are always impure because allocation is a side-effect. *)
tpe "tup_impure" "let t = (1, false) in t" ["t"];
(* Functions are pure only at the top level, inner nested functions are
sometimes impure. *)
tpe "func_pure" "let f = (lambda x: x) in f" [];
(* `print` and `printStack` are the only always-impure Prim1s.
`add1`, `sub1` and `not` are impure if they have improperly-typed constants. *)
tpe "add1_pure" "let x = add1(10) in x" [];
tpe "sub1_pure" "let x = sub1(10) in x" [];
tpe "not_pure" "let b = !(true) in b" [];
tpe "isnum_pure" "let b = isnum(10) in b" [];
tpe "isbool_pure" "let b = isbool(10) in b" [];
tpe "istup_pure" "let b = istuple(10) in b" [];
tpe "print_impure" "let x = print(10) in x" ["x"];
tpe "printStack_impure" "let x = printStack(10) in x" ["x"];
(* All Prim2s are pure, so long as they don't have improperly-typed constants. *)
tpe "add_pure" "let x = 1 + 2 in x" [];
tpe "sub_pure" "let x = 1 - 2 in x" [];
tpe "times_pure" "let x = 1 * 2 in x" [];
tpe "lt_pure" "let b = 1 < 2 in x" [];
tpe "lte_pure" "let b = 1 <= 2 in x" [];
tpe "gt_pure" "let b = 1 > 2 in x" [];
tpe "gte_pure" "let b = 1 >= 2 in x" [];
tpe "eq_pure1" "let e = 1 == 1 in e" [];
tpe "eq_pure2" "let e = 1 == true in e" [];
tpe "eq_pure3" "let e = false == true in e" [];
tpe "and_pure" "let b = true && false in b" [];
tpe "or_pure" "let b = false || false in b" [];
tpe "add_impure" "let x = 1 + true in x" ["x"];
tpe "sub_impure" "let x = false - 2 in x" ["x"];
tpe "times_impure" "let x = 1 * false in x" ["x"];
tpe "lt_impure" "let b = 1 < true in x" ["b"];
tpe "lte_impure" "let b = false <= 2 in x" ["b"];
tpe "gt_impure" "let b = false > 2 in x" ["b"];
tpe "gte_impure" "let b = 1 >= true in x" ["b"];
tpe "and_impure" "let b = true && 1 in b" ["b"];
tpe "or_impure" "let b = 2 || false in b" ["b"];
(* Getting from a tuple is pure, as long as the tuple is an id and the index is not a bool.
Note that the tuple can only become a non-id during optimization.
Setting in a tuple is impure. *)
tpe "get_pure" "let t = (1, 2, 3), x = t[1] in x" ["t"];
tpe "get_impure" "let t = (1, 2, 3), x = t[true] in x" ["t"; "x"];
tpe "set_pure" "let t = (1, 2, 3), x = (t[1] := 4) in x" ["t"; "x"];
(* Calling a function is pure if the body of the function is pure. *)
tpe "call_pure" "let f = (lambda x: x), y = f(10) in y" [];
tpe "call_impure" "let f = (lambda x: print(x)), y = f(10) in y" ["y"];
tpe "rec_call_pure"
"let rec x = (lambda a: y(a)), y = (lambda b: x(b)) in
let ans = y(5) in
ans"
["x"; "y"];
tpe "rec_call_impure"
"let rec x = (lambda a: let printed = print(a) in y(printed)), y = (lambda b: x(b)) in
let ans = y(5) in
ans"
["x"; "y"; "printed"; "ans"];
(* An `if` is pure if both of its branches are pure or if there's a constant condition
and the corresponding branch is pure. If the condition is a number, it's impure. *)
tpe "if_pure" "let x = (if true: 10 else: true) in x" [];
tpe "if_impure1" "let x = (if true: 10 else: print(true)) in x" [];
tpe "if_impure2" "let c = true in
let x = (if c: 10 else: print(true)) in x" ["x"];
tpe "if_impure3" "let x = (if true: print(10) else: true) in x" ["x"];
tpe "if_impure4" "let x = (if 1: false else: true) in x" ["x"];
(* Higher-order functions assume their arguments are pure. *)
tpe "sound_ho_func"
"let f = (lambda g: g(10)) in
let arg = (lambda x: x) in
let ans = f(arg) in
ans"
[];
tpe "unsound_ho_func"
"let f = (lambda g: g(10)) in
let arg = (lambda x: print(x)) in
let ans = f(arg) in
ans"
(* `ans` is really impure, but we miss it because of our assumption. *)
[];
(* Functions returned from higher-order functions are assumed to be impure. *)
tpe "pure_ho_return"
"let f = (lambda x: (lambda: x)) in
let g = f(10) in
let ans = g() in
ans"
(* `ans` is actually pure, but it's too much of a hassle to figure that out. *)
["ans"];
tpe "impure_ho_return"
"let f = (lambda x: (lambda: print(x))) in
let g = f(10) in
let ans = g() in
ans"
["ans"];
(* `seqs` record if any of their pieces are impure. *)
tpe "seq_pure" "begin 1; 2; 3 end" [];
tpe "seq_impure" "begin 1; print(2); 3 end" ["$seq_2"];
];;
let cf_tests = [
(* Prim1 constant-folds *)
tcf "add1_const" "add1(1)" "2";
tcf "sub1_const" "sub1(-30)" "-31";
tcf "not_const" "!(true)" "false";
tcf "isnum_const1" "isnum(false)" "false";
tcf "isnum_const2" "isnum(10)" "true";
tcf "isbool_const1" "isbool(true)" "true";
tcf "isbool_const2" "isbool(-50)" "false";
(* Prim2 constant-folds *)
tcf "plus_const" "3 + 4" "7";
tcf "minus_const" "10 - (-10)" "20";
tcf "times_const" "-3 * -6" "18";
tcf "lt_const" "3 < 4" "true";
tcf "gt_const" "3 > 4" "false";
tcf "lte_const" "-10 <= -10" "true";
tcf "gte_const" "100 >= 101" "false";
tcf "num_eq_const1" "10 == 10" "true";
tcf "num_eq_const2" "10 == 20" "false";
tcf "num_bool_eq1" "10 == false" "false";
tcf "num_bool_eq2" "true == 20" "false";
tcf "bool_eq_const1" "false == false" "true";
tcf "bool_eq_const2" "false == true" "false";
tcf "and_const1" "true && true" "true";
tcf "and_const2" "false && true" "false";
tcf "or_const1" "false || true" "true";
tcf "or_const2" "false || false" "false";
(* Overflows preserved by constant folding. *)
tcf "add1_max" (sprintf "add1(%d)" max_int) (sprintf "add1(%d)" max_int);
tcf "sub1_min" (sprintf "sub1(%d)" min_int) (sprintf "sub1(%d)" min_int);
tcf "plus_max" (sprintf "1 + %d" max_int) (sprintf "1 + %d" max_int);
tcf "minus_min" (sprintf "%d - 1" min_int) (sprintf "%d - 1" min_int);
tcf "times_max" (sprintf "%d * 2" max_int) (sprintf "%d * 2" max_int);
tcf "times_min" (sprintf "2 * %d" min_int) (sprintf "2 * %d" min_int);
tcf "max_minus_min" (sprintf "%d - %d" max_int min_int) (sprintf "%d - %d" max_int min_int);
(* Type mismatches preserved by constant folding. *)
tcf "add1_bool" "add1(true)" "add1(true)";
tcf "sub1_bool" "sub1(false)" "sub1(false)";
tcf "not_num" "!(10)" "!(10)";
tcf "plus_bool1" "0 + true" "0 + true";
tcf "plus_bool2" "true + 0" "true + 0";
tcf "sub_bool" "false - 0" "false - 0";
tcf "times_bool1" "1 * false" "1 * false";
tcf "times_bool2" "true * 1" "true * 1";
tcf "times_bool3" "false * 0" "false * 0";
tcf "times_bool4" "0 * true" "0 * true";
tcf "and_num1" "10 && false" "10 && false";
tcf "and_num2" "true && 11" "true && 11";
tcf "or_num1" "true || 9" "true || 9";
tcf "or_num2" "12 || false" "12 || false";
(* Constant-folds that might erase runtime type errors. *)
tcf "zero_plus_var1" "0 + x" "x";
tcf "zero_plus_var2" "x + 0" "x";
tcf "var_minus_zero" "x - 0" "x";
tcf "one_times_var1" "1 * x" "x";
tcf "one_times_var2" "x * 1" "x";
tcf "zero_times_var1" "0 * x" "0";
tcf "zero_times_var2" "x * 0" "0";
tcf "and_var1" "true && x" "x";
tcf "and_var2" "x && true" "x";
tcf "and_var3" "false && x" "false";
tcf "and_var4" "x && false" "false";
tcf "or_var1" "false || x" "x";
tcf "or_var2" "x || false" "x";
tcf "or_var3" "true || x" "true";
tcf "or_var4" "x || true" "true";
(* If constant folds. *)
tcf "if_constant1" "if true: 5 else: 6" "5";
tcf "if_constant2" "if false: 5 else: 6" "6";
tcf "if_constant3" "if true: if false: 5 else: 6 else: 7" "6";
tcf "if_constant4" "if false: 5 else: if true: 6 else: 7" "6";
(* Nested constant folding *)
tcf "assignment_example"
"let x = 4 + 5 in
let y = x * 2 in
let z = y - x in
let a = x + 7 in
let b = 14 in
a + b"
"let x = 9 in
let y = 18 in
let z = 9 in
let a = 16 in
let b = 14 in
30";
tcf "simple_fun_inlining"
"let f = (lambda: 9) in
let x = f() in
x"
"let f = (lambda: 9) in
let x = 9 in
9";
tcf "inline_with_args"
"let f = (lambda x, y: x - y) in
let x = f(10, 8) in
x"
"let f = (lambda x, y: x - y) in
let x = 2 in
2";
tcf "fold_free_vars"
"let x = 10 + 5 in
let f = (lambda: x) in
let f_call = f() in
let y = x + f_call in
y"
"let x = 15 in
let f = (lambda: 15) in
let f_call = 15 in
let y = 30 in
30";
tcf "replace_call_args"
"let x = 10 + 5 in
let y = true in
let f = (lambda a, b: if b: add1(a) else: sub1(a)) in
f(x, y)"
"let x = 15 in
let y = true in
let f = (lambda a, b: if b: add1(a) else: sub1(a)) in
f(15, true)";
tcf "raise_let_from_if_in_let"
"let x = if true: let a = 10 in a + 6
else: let b = 9 in b - 8 in
x + 20"
"let a = 10 in
let x = 16 in
36";
tcf "raise_let_from_if_in_seq"
"begin
if false: let a = 10 in a + 6
else: let b = 9 in b - 8;
print(20)
end"
"let b = 9 in
begin
1;
print(20)
end";
tcf "raise_letrec_from_if_in_let"
"let x = if false: 10
else: let rec f = (lambda x: g(x)),
g = (lambda y: f(y)) in
f(10) in
x + 30"
"let rec f = (lambda x: g(x)), g = (lambda y: f(y)) in
let x = f(10) in
x + 30";
tcf "raise_letrec_from_if_in_seq"
"begin
if true: let rec f = (lambda x: g(x)),
g = (lambda y: f(y)) in f(10)
else: 10;
print(100)
end"
"let rec f = (lambda x: g(x)), g = (lambda y: f(y)) in
begin
f(10);
print(100)
end";
tcf "raise_seq_from_if_in_let"
"let x = if true: if false: 30
else: begin print(10); 40 end
else: 50 in
x - 100"
"begin
print(10);
let x = 40 in
-60
end";
tcf "raise_seq_from_if_in_seq"
"begin
if false: 50
else: if true: begin print(10); 40 end
else: 30;
print(-35)
end"
"begin
print(10);
40;
print(-35)
end"
];;
let cse_tests = [
tcse "cse_num" "5" "5";
tcse "cse_bool" "false" "false";
tcse "cse_print1" "print(9)" "print(9)";
tcse "cse_print2" "(lambda x: print(x))"
"(lambda x: print(x))";
tcse "cse_print3" "let t = print(5) in 7"
"let t = print(5) in 7";
tcse "cse_fun1" "let t = (lambda x: x) in print(5)"
"let t = (lambda x: x) in print(5)";
tcse "cse_fun2" "let t = (lambda x: print(x)) in t"
"let t = (lambda x: print(x)) in t";
tcse "cse_simple" "let t = 2 + 4 in
let x = 2 + 4 in
x"
"let t = 2 + 4 in
let x = t in
t";
tcse "cse_none" "let x = 5 in
let y = x in
y"
"let x = 5 in
let y = x in
x";
tcse "cse_var" "let x = 5 in
let y = x in
let a = x + 2 in
a"
"let x = 5 in
let y = x in
let a = x + 2 in
a";
tcse "cse_var_and_add" "let x = 5 in
let y = x in
let a = x + 2 in
let b = y + 2 in
b"
"let x = 5 in
let y = x in
let a = x + 2 in
let b = a in a";