diff --git a/reports/agriculture/report.ipynb b/reports/agriculture/report.ipynb index eeb0ac1..3f888ef 100644 --- a/reports/agriculture/report.ipynb +++ b/reports/agriculture/report.ipynb @@ -72,7 +72,210 @@ "hide-input" ] }, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "C:\\Users\\WB514197\\AppData\\Local\\Temp\\ipykernel_15444\\3742192984.py:20: UserWarning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.\n", + "\n", + " centx, centy = one.centroid.x.iloc[0], one.centroid.y.iloc[0]\n" + ] + }, + { + "data": { + "text/html": [ + "" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "from geemap.foliumap import Map\n", "import requests\n", @@ -149,7 +352,137 @@ "hide-input" ] }, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "\n", + " \n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
RegionCrop Area ha.Crop Area Share
0Maradi2,519,23061.74%
1Zinder2,190,19214.35%
2Dosso1,236,56538.27%
3Tillabéri1,087,18811.68%
4Tahoua956,0038.54%
5Diffa122,4610.79%
6Agadez55,0500.08%
7Niamey4,8438.71%
\n", + "
" + ], + "text/plain": [ + " Region Crop Area ha. Crop Area Share\n", + "0 Maradi 2,519,230 61.74%\n", + "1 Zinder 2,190,192 14.35%\n", + "2 Dosso 1,236,565 38.27%\n", + "3 Tillabéri 1,087,188 11.68%\n", + "4 Tahoua 956,003 8.54%\n", + "5 Diffa 122,461 0.79%\n", + "6 Agadez 55,050 0.08%\n", + "7 Niamey 4,843 8.71%" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "import pandas as pd\n", "import json\n", @@ -205,7 +538,276 @@ "hide-input" ] }, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "\n", + " \n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "# MODIS\n", "start_period = ee.Date('2001-01-01')\n", @@ -353,7 +955,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 5, "metadata": { "tags": [ "remove-cell"