-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
359 lines (300 loc) · 17.5 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
import os
import itertools
import argparse
import time
import datetime
import yaml
from contextlib import nullcontext
import torch
from torch import nn
import tabpfniml.tabpfn_interpret.utils as utils
from tabpfniml.tabpfn_interpret.transformer import TransformerModel
from tabpfniml.tabpfn_interpret.utils import get_cosine_schedule_with_warmup, get_openai_lr, StoreDictKeyPair, get_weighted_single_eval_pos_sampler, get_uniform_single_eval_pos_sampler
import tabpfniml.tabpfn_interpret.priors as priors
import tabpfniml.tabpfn_interpret.encoders as encoders
import tabpfniml.tabpfn_interpret.positional_encodings as positional_encodings
from tabpfniml.tabpfn_interpret.utils import init_dist
from torch.cuda.amp import autocast, GradScaler
from torch import nn
class Losses():
gaussian = nn.GaussianNLLLoss(full=True, reduction='none')
mse = nn.MSELoss(reduction='none')
def ce(num_classes):
num_classes = num_classes.shape[0] if torch.is_tensor(num_classes) else num_classes
return nn.CrossEntropyLoss(reduction='none', weight=torch.ones(num_classes))
bce = nn.BCEWithLogitsLoss(reduction='none')
def train(priordataloader_class, criterion, encoder_generator, emsize=200, nhid=200, nlayers=6, nhead=2, dropout=0.0,
epochs=10, steps_per_epoch=100, batch_size=200, bptt=10, lr=None, weight_decay=0.0, warmup_epochs=10, input_normalization=False,
y_encoder_generator=None, pos_encoder_generator=None, decoder=None, extra_prior_kwargs_dict={}, scheduler=get_cosine_schedule_with_warmup,
load_weights_from_this_state_dict=None, validation_period=10, single_eval_pos_gen=None, bptt_extra_samples=None, gpu_device='cuda:0',
aggregate_k_gradients=1, verbose=True, style_encoder_generator=None, epoch_callback=None,
initializer=None, initialize_with_model=None, train_mixed_precision=False, efficient_eval_masking=True, **model_extra_args
):
device = gpu_device if torch.cuda.is_available() else 'cpu:0'
print(f'Using {device} device')
using_dist, rank, device = init_dist(device)
single_eval_pos_gen = single_eval_pos_gen if callable(single_eval_pos_gen) else lambda: single_eval_pos_gen
def eval_pos_seq_len_sampler():
single_eval_pos = single_eval_pos_gen()
if bptt_extra_samples:
return single_eval_pos, single_eval_pos + bptt_extra_samples
else:
return single_eval_pos, bptt
dl = priordataloader_class(num_steps=steps_per_epoch, batch_size=batch_size, eval_pos_seq_len_sampler=eval_pos_seq_len_sampler, seq_len_maximum=bptt+(bptt_extra_samples if bptt_extra_samples else 0), device=device, **extra_prior_kwargs_dict)
encoder = encoder_generator(dl.num_features, emsize)
#style_def = dl.get_test_batch()[0][0] # the style in batch of the form ((style, x, y), target, single_eval_pos)
style_def = None
#print(f'Style definition of first 3 examples: {style_def[:3] if style_def is not None else None}')
style_encoder = style_encoder_generator(style_def.shape[1], emsize) if (style_def is not None) else None
if isinstance(criterion, nn.GaussianNLLLoss):
n_out = 2
elif isinstance(criterion, nn.CrossEntropyLoss):
n_out = criterion.weight.shape[0]
else:
n_out = 1
model = TransformerModel(encoder, n_out, emsize, nhead, nhid, nlayers, dropout, style_encoder=style_encoder,
y_encoder=y_encoder_generator(1, emsize), input_normalization=input_normalization,
pos_encoder=(pos_encoder_generator or positional_encodings.NoPositionalEncoding)(emsize, bptt*2),
decoder=decoder, init_method=initializer, efficient_eval_masking=efficient_eval_masking, **model_extra_args
)
model.criterion = criterion
if load_weights_from_this_state_dict is not None:
model.load_state_dict(load_weights_from_this_state_dict)
if initialize_with_model is not None:
model.init_from_small_model(initialize_with_model)
print(f"Using a Transformer with {sum(p.numel() for p in model.parameters())/1000/1000:.{2}f} M parameters")
try:
for (k, v), (k2, v2) in zip(model.state_dict().items(), initialize_with_model.state_dict().items()):
print(k, ((v - v2) / v).abs().mean(), v.shape)
except Exception:
pass
model.to(device)
if using_dist:
print("Distributed training")
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[rank], output_device=rank, broadcast_buffers=False)
dl.model = model
# learning rate
if lr is None:
lr = get_openai_lr(model)
print(f"Using OpenAI max lr of {lr}.")
optimizer = torch.optim.AdamW(model.parameters(), lr=lr, weight_decay=weight_decay)
scheduler = scheduler(optimizer, warmup_epochs, epochs if epochs is not None else 100) # when training for fixed time lr schedule takes 100 steps
scaler = GradScaler() if train_mixed_precision else None
# check that everything uses up-to-date APIs
utils.check_compatibility(dl)
def train_epoch():
model.train() # Turn on the train mode
total_loss = 0.
total_positional_losses = 0.
total_positional_losses_recorded = 0
nan_steps = 0
ignore_steps = 0
before_get_batch = time.time()
assert len(dl) % aggregate_k_gradients == 0, 'Please set the number of steps per epoch s.t. `aggregate_k_gradients` divides it.'
for batch, (data, targets, single_eval_pos) in enumerate(dl):
if using_dist and not (batch % aggregate_k_gradients == aggregate_k_gradients - 1):
cm = model.no_sync()
else:
cm = nullcontext()
with cm:
time_to_get_batch = time.time() - before_get_batch
before_forward = time.time()
if bptt_extra_samples is None:
single_eval_pos = single_eval_pos_gen() if callable(single_eval_pos_gen) else single_eval_pos_gen
else:
single_eval_pos = targets.shape[0] - bptt_extra_samples
with autocast(enabled=scaler is not None):
# If style is set to None, it should not be transferred to device
output = model(tuple(e.to(device) if torch.is_tensor(e) else e for e in data) if isinstance(data, tuple) else data.to(device)
, single_eval_pos=single_eval_pos)
forward_time = time.time() - before_forward
if single_eval_pos is not None:
targets = targets[single_eval_pos:]
if isinstance(criterion, nn.GaussianNLLLoss):
assert output.shape[-1] == 2, \
'need to write a little bit of code to handle multiple regression targets at once'
mean_pred = output[..., 0]
var_pred = output[..., 1].abs()
losses = criterion(mean_pred.flatten(), targets.to(device).flatten(), var=var_pred.flatten())
elif isinstance(criterion, (nn.MSELoss, nn.BCEWithLogitsLoss)):
losses = criterion(output.flatten(), targets.to(device).flatten())
elif isinstance(criterion, nn.CrossEntropyLoss):
losses = criterion(output.reshape(-1, n_out), targets.to(device).long().flatten())
else:
losses = criterion(output, targets)
losses = losses.view(*output.shape[0:2])
loss, nan_share = utils.torch_nanmean(losses.mean(0), return_nanshare=True)
loss = loss / aggregate_k_gradients
if scaler: loss = scaler.scale(loss)
loss.backward()
if batch % aggregate_k_gradients == aggregate_k_gradients - 1:
if scaler: scaler.unscale_(optimizer)
torch.nn.utils.clip_grad_norm_(model.parameters(), 1.)
try:
if scaler:
scaler.step(optimizer)
scaler.update()
else:
optimizer.step()
except:
print("Invalid optimization step encountered")
optimizer.zero_grad()
step_time = time.time() - before_forward
if not torch.isnan(loss):
total_loss += losses.mean().cpu().detach().item()
total_positional_losses += losses.mean(1).cpu().detach() if single_eval_pos is None else \
nn.functional.one_hot(torch.tensor(single_eval_pos), bptt)*\
losses[:bptt-single_eval_pos].mean().cpu().detach()
total_positional_losses_recorded += torch.ones(bptt) if single_eval_pos is None else \
nn.functional.one_hot(torch.tensor(single_eval_pos), bptt)
nan_steps += nan_share
ignore_steps += (targets == -100).float().mean()
before_get_batch = time.time()
return total_loss / steps_per_epoch, (total_positional_losses / total_positional_losses_recorded).tolist(),\
time_to_get_batch, forward_time, step_time, nan_steps.cpu().item()/(batch+1),\
ignore_steps.cpu().item()/(batch+1)
total_loss = float('inf')
total_positional_losses = float('inf')
try:
for epoch in (range(1, epochs + 1) if epochs is not None else itertools.count(1)):
epoch_start_time = time.time()
total_loss, total_positional_losses, time_to_get_batch, forward_time, step_time, nan_share, ignore_share =\
train_epoch()
if hasattr(dl, 'validate') and epoch % validation_period == 0:
with torch.no_grad():
val_score = dl.validate(model)
else:
val_score = None
if verbose:
print('-' * 89)
print(
f'| end of epoch {epoch:3d} | time: {(time.time() - epoch_start_time):5.2f}s | mean loss {total_loss:5.2f} | '
f"pos losses {','.join([f'{l:5.2f}' for l in total_positional_losses])}, lr {scheduler.get_last_lr()[0]}"
f' data time {time_to_get_batch:5.2f} step time {step_time:5.2f}'
f' forward time {forward_time:5.2f}'
f' nan share {nan_share:5.2f} ignore share (for classification tasks) {ignore_share:5.4f}'
+ (f'val score {val_score}' if val_score is not None else ''))
print('-' * 89)
# stepping with wallclock time based scheduler
if epoch_callback is not None and rank == 0:
epoch_callback(model, epoch / epochs)
scheduler.step()
except KeyboardInterrupt:
pass
if rank == 0: # trivially true for non-parallel training
if isinstance(model, torch.nn.parallel.DistributedDataParallel):
model = model.module
dl = None
return total_loss, total_positional_losses, model.to('cpu'), dl
def _parse_args(config_parser, parser):
# Do we have a config file to parse?
args_config, remaining = config_parser.parse_known_args()
if args_config.config:
with open(args_config.config, 'r') as f:
cfg = yaml.safe_load(f)
parser.set_defaults(**cfg)
# The main arg parser parses the rest of the args, the usual
# defaults will have been overridden if config file specified.
args = parser.parse_args(remaining)
# Cache the args as a text string to save them in the output dir later
args_text = yaml.safe_dump(args.__dict__, default_flow_style=False)
return args, args_text
if __name__ == '__main__':
config_parser = argparse.ArgumentParser(description='Only used as a first parser for the config file path.')
config_parser.add_argument('--config')
parser = argparse.ArgumentParser()
parser.add_argument('prior')
parser.add_argument('--loss_function', default='barnll')
# Optional Arg's for `--loss_function barnll`
parser.add_argument('--min_y', type=float, help='barnll can only model y in strict ranges, this is the minimum y can take.')
parser.add_argument('--max_y', type=float, help='barnll can only model y in strict ranges, this is the maximum y can take.')
parser.add_argument('--num_buckets', default=100, type=int)
#parser.add_argument('--num_features', default=None, type=int, help='Specify depending on the prior.')
parser.add_argument("--extra_prior_kwargs_dict", default={}, dest="extra_prior_kwargs_dict", action=StoreDictKeyPair, nargs="+", metavar="KEY=VAL", help='Specify depending on the prior.')
parser.add_argument('--encoder', default='linear', type=str, help='Specify depending on the prior.')
parser.add_argument('--y_encoder', default='linear', type=str, help='Specify depending on the prior. You should specify this if you do not fuse x and y.')
parser.add_argument('--pos_encoder', default='none', type=str, help='Specify depending on the prior.')
parser.add_argument('--bptt', default=10, type=int)
parser.add_argument('--epochs', default=200, type=int)
parser.add_argument('--warmup_epochs', default=50, type=int)
parser.add_argument('--validation_period', default=10, type=int)
parser.add_argument('--permutation_invariant_max_eval_pos', default=None, type=int, help='Set this to an int to ')
parser.add_argument('--permutation_invariant_sampling', default='weighted', help="Only relevant if --permutation_invariant_max_eval_pos is set.")
parser.add_argument('--train_mixed_precision', action='store_true')
# these can likely be mostly left at defaults
parser.add_argument('--emsize', default=512, type=int) # sometimes even larger is better e.g. 1024
parser.add_argument('--nlayers', default=6, type=int)
parser.add_argument('--nhid', default=None, type=int) # 2*emsize is the default
parser.add_argument('--nhead', default=4, type=int) # nhead = emsize / 64 in the original paper
parser.add_argument('--dropout', default=.0, type=float)
parser.add_argument('--steps_per_epoch', default=10, type=int)
parser.add_argument('--batch_size', default=1000, type=int)
parser.add_argument('--lr', '--learning_rate', default=.001, type=float) # try also .0003, .0001, go lower with lower batch size
args, _ = _parse_args(config_parser, parser)
if args.nhid is None:
args.nhid = 2*args.emsize
prior = args.__dict__.pop('prior')
if prior == 'gp':
prior = priors.fast_gp.DataLoader
elif prior == 'ridge':
prior = priors.ridge.DataLoader
elif prior == 'stroke':
prior = priors.stroke.DataLoader
elif prior == 'mix_gp':
prior = priors.fast_gp_mix.DataLoader
else:
raise NotImplementedError(f'Prior == {prior}.')
loss_function = args.__dict__.pop('loss_function')
criterion = nn.GaussianNLLLoss(reduction='none', full=True)
classificiation_criterion = nn.CrossEntropyLoss(reduction='none')
num_buckets = args.__dict__.pop('num_buckets')
max_y = args.__dict__.pop('max_y')
min_y = args.__dict__.pop('min_y')
# criterion = nn.MSELoss(reduction='none')
if loss_function == 'ce':
criterion = nn.CrossEntropyLoss(reduction='none')
elif loss_function == 'gaussnll':
criterion = nn.GaussianNLLLoss(reduction='none', full=True)
elif loss_function == 'mse':
criterion = nn.MSELoss(reduction='none')
else:
raise NotImplementedError(f'loss_function == {loss_function}.')
encoder = args.__dict__.pop('encoder')
y_encoder = args.__dict__.pop('y_encoder')
def get_encoder_generator(encoder):
if encoder == 'linear':
encoder_generator = encoders.Linear
elif encoder == 'mlp':
encoder_generator = encoders.MLP
elif encoder == 'positional':
encoder_generator = encoders.Positional
else:
raise NotImplementedError(f'A {encoder} encoder is not valid.')
return encoder_generator
encoder_generator = get_encoder_generator(encoder)
y_encoder_generator = get_encoder_generator(y_encoder)
pos_encoder = args.__dict__.pop('pos_encoder')
if pos_encoder == 'none':
pos_encoder_generator = None
elif pos_encoder == 'sinus':
pos_encoder_generator = positional_encodings.PositionalEncoding
elif pos_encoder == 'learned':
pos_encoder_generator = positional_encodings.LearnedPositionalEncoding
elif pos_encoder == 'paired_scrambled_learned':
pos_encoder_generator = positional_encodings.PairedScrambledPositionalEncodings
else:
raise NotImplementedError(f'pos_encoer == {pos_encoder} is not valid.')
permutation_invariant_max_eval_pos = args.__dict__.pop('permutation_invariant_max_eval_pos')
permutation_invariant_sampling = args.__dict__.pop('permutation_invariant_sampling')
if permutation_invariant_max_eval_pos is not None:
if permutation_invariant_sampling == 'weighted':
get_sampler = get_weighted_single_eval_pos_sampler
elif permutation_invariant_sampling == 'uniform':
get_sampler = get_uniform_single_eval_pos_sampler
else:
raise ValueError()
args.__dict__['single_eval_pos_gen'] = get_sampler(permutation_invariant_max_eval_pos)
print("ARGS for `train`:", args.__dict__)
train(prior, criterion, encoder_generator,
y_encoder_generator=y_encoder_generator, pos_encoder_generator=pos_encoder_generator,
**args.__dict__)