-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathmetrics.py
185 lines (151 loc) · 4.14 KB
/
metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
""" An implementation of some of Vargas' measures of recommendation diversity.
For more information:
@phdthesis{vargas2015novelty,
title={Novelty and diversity evaluation and enhancement in recommender systems},
author={Vargas, S},
year={2015},
school={Ph. D. thesis}
}
Todo:
* Proper commenting
* Clean up
"""
from __future__ import division
import numpy as np
from scipy import spatial
from scipy import stats
from scipy.stats import norm
from sklearn import metrics
import random
import time
def EPC(Rec,RecAsMatrix,M,U_,Rtest):
""" Expected Popularity Complement (EPC).
"""
A = []
for u in range(U_):
if u not in Rec.keys(): continue
Cu = 1/np.sum([disc(i) for i,item in enumerate(Rec[u])])
sum_ = 0
for i,item in enumerate(Rec[u]):
sum_+= (1 - np.sum(Ui(item,M))/U_)*disc(i)*Prel(item,u,Rtest)
A.append(sum_*Cu)
#print("EPC:",np.mean(A))
return (np.mean(A),np.std(A))
def EFD(Rec,RecAsMatrix,M,U_,Rtest):
""" Expected Free Discovery (EFD).
"""
A = []
for u in range(U_):
if u not in Rec.keys(): continue
Cu = 1/np.sum([disc(i) for i,item in enumerate(Rec[u])])
sum_ = 0
for i,item in enumerate(Rec[u]):
top = np.sum(Ui(item,M))
bottom = np.sum(np.sum(M))
sum_+= np.log2(top/bottom)*disc(i)*Prel(item,u,Rtest)
A.append(sum_*(-Cu))
#print("EFD:",np.mean(A))
return np.mean(A),np.std(A)
def EPD(Rec,RecAsMatrix,M,U_,Rtest,dist):
""" Expected Profile Distance (EPD).
"""
A = []
for u in range(U_):
if u not in Rec.keys(): continue
Cu = 1/np.sum([disc(i) for i,item in enumerate(Rec[u])])
Cu_ = np.sum([Prel(i,u,Rtest) for i in np.where(Iu(u, M)>=1)[0]])
Iuu = np.where(Iu(u, M)>=1)[0]
sum_ = 0
for i,item in enumerate(Rec[u]):
for itemj in Iuu:
sum_ += dist[item,itemj]*disc(i)*Prel(item,u,Rtest)*Prel(itemj,u,Rtest)
A.append((Cu/Cu_)*sum_)
return np.mean(A),np.std(A)
def EILD(Rec,RecAsMatrix,M,U_,Rtest,dist):
""" Expected Intra-List Distance (EILD)
Not sure if this works correctly. Not used.
"""
A = []
for u in range(U_):
if u not in Rec.keys(): continue
Cu = 1/np.sum([disc(i) for i,item in enumerate(Rec[u])])
sum_ = 0
for i,item in enumerate(Rec[u]):
Ci = Cu/np.sum([disc(max(0,j-i))*Prel(itemj,u,Rtest) for j,itemj in enumerate(Rec[u])])
for j,itemj in enumerate(Rec[u]):
if j>i:
sum_ += dist[item,itemj]*disc(i)*disc(max(0,j-i))*Prel(item,u,Rtest)*Prel(itemj,u,Rtest)*Ci
A.append(sum_)
return np.mean(A), np.std(A)
def ILD(Rec,RecAsMatrix,M,U_,dist):
""" Intra-List distance (ILD)
"""
allR = np.where(np.sum(RecAsMatrix,axis=0)>=1)[0]
sum_ = 0
for item in allR:
for itemj in allR:
sum_ += dist[item,itemj]
R_ = np.sum(np.sum(RecAsMatrix))
return (1/(R_*(R_-1)))*sum_, 0
# User and item interaction profiles
def Iu(u, M):
return M[u,:]
def Ui(i, M):
return M[:,i]
def Prel(i, u, Mr):
if Mr[u,i]>=1: return 1
else: return 0.01
# User rec profile
def R(u,R):
return R[u,:]
# Simple exponential discount
def disc(k):
beta = 0.9
return np.power(beta, k)
def gini(x):
x = np.sort(x)
n = x.shape[0]
xbar = np.mean(x)
#Calc Gini using unordered data (Damgaard & Weiner, Ecology 2000)
absdif = 0
for i in range(n):
for j in range(n): absdif += abs(x[i]-x[j])
G = absdif/(2*np.power(n,2)*xbar) * (n/(n)) # change to n/(n-1) for unbiased
return G
def computeGinis(S, C):
""" Gini diversity measure
Based on: Kartik Hosanagar, Daniel Fleder (2008)
"""
GiniPerRec = {}
S = S - C
G1 = gini(np.sum(C,axis=0))
G2 = gini(np.sum(S,axis=0))
return G2 - G1
def metrics(M,Rec,ItemFeatures,dist,Mafter):
U_ = M.shape[0]
I_ = M.shape[1]
Rtest = Mafter - M
RecAsMatrix = np.zeros((U_, I_))
for u in Rec.keys():
RecAsMatrix[u,Rec[u]]=1
s = time.time()
(mEPC,sEPC) = EPC(Rec,RecAsMatrix,M,U_,Rtest)
e = time.time()
print("time:",e-s)
#(mILD,sILD) = ILD(Rec,RecAsMatrix,M,U_,dist)
#(mEFD,sEFD) = EFD(Rec,RecAsMatrix,M,U_,Rtest)
s = time.time()
(mEPD,sEPD) = EPD(Rec,RecAsMatrix,M,U_,Rtest,dist)
e = time.time()
print("time:",e-s)
#(mEILD,sEILD) = EILD(Rec,RecAsMatrix,M,U_,Rtest,dist)
return {"EPC" : mEPC,
"EPCstd" : sEPC,
"ILD": 0,
"ILDstd": 0,
"EFD": 0,
"EFDstd": 0,
"EPD": mEPD,
"EPDstd": mEPD,
"EILD": 0,
"EILDstd": 0}