-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtest_ppi_ESM2.py
140 lines (111 loc) · 6.02 KB
/
test_ppi_ESM2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import numpy as np
import torch
import pandas as pd
from torch.utils.data import DataLoader
import argparse
from sklearn.metrics import roc_auc_score,accuracy_score,f1_score,precision_score,recall_score,precision_recall_curve,auc
import logging
# from torch.utils.tensorboard import SummaryWriter
import random
import os
from torch.utils.data import Dataset
from torch.nn import functional as F
import warnings
warnings.filterwarnings("ignore")
import torch.nn as nn
from transformers import AutoTokenizer, AutoModel
from Bio import SeqIO
from tqdm import tqdm
from models.models import baseline, DeepNano_seq,DeepNano
from utils.dataloader import seqData_Dscript
from utils.evaluate import evaluate
# ESM2_MODEL = 'esm2_t6_8M_UR50D'
# ESM2_MODEL = 'esm2_t12_35M_UR50D'
# ESM2_MODEL = 'esm2_t30_150M_UR50D'
ESM2_MODEL = 'esm2_t33_650M_UR50D'
def predicting(model, device, loader, Model_type):
model.eval()
total_preds_ave = torch.Tensor()
total_preds_min = torch.Tensor()
total_preds_max = torch.Tensor()
total_labels = torch.Tensor()
logging.info('Make prediction for {} samples...'.format(len(loader.dataset)))
with torch.no_grad():
for data in tqdm(loader):
# for data in loader:
#Get input
seqs_nanobody = data[0]
seqs_antigen = data[1]
#Calculate output
g = data[2]
if Model_type == 0:
predictions = model(seqs_nanobody,seqs_antigen,device)
total_preds_ave = torch.cat((total_preds_ave, predictions.cpu()), 0)
elif Model_type == 1:
p_ave, p_min, p_max = model(seqs_nanobody,seqs_antigen,device)
total_preds_ave = torch.cat((total_preds_ave, p_ave.cpu()), 0)
total_preds_min = torch.cat((total_preds_min, p_min.cpu()), 0)
total_preds_max = torch.cat((total_preds_max, p_max.cpu()), 0)
total_labels = torch.cat((total_labels, g), 0)
if Model_type == 1:
return total_labels.numpy().flatten(),total_preds_ave.numpy().flatten(),total_preds_min.numpy().flatten(),total_preds_max.numpy().flatten()
else:
return total_labels.numpy().flatten(),total_preds_ave.numpy().flatten()
###装载训练好的模型
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
from torch.utils.data import Dataset
import pandas as pd
import numpy as np
from Bio import SeqIO
import random
import torch
from torch import nn
print('##########################在DeepNano-seq(DScriptData),{}模型:'.format(ESM2_MODEL))
###装载训练好的模型baseline#################
# model = baseline().to(device)
if ESM2_MODEL == 'esm2_t6_8M_UR50D':
model = DeepNano_seq(pretrained_model=r'./models/esm2_t6_8M_UR50D',hidden_size=320, finetune=0).to(device)
if ESM2_MODEL == 'esm2_t12_35M_UR50D':
model = DeepNano_seq(pretrained_model=r'./models/esm2_t12_35M_UR50D',hidden_size=480,finetune=0).to(device)
if ESM2_MODEL == 'esm2_t30_150M_UR50D':
model = DeepNano_seq(pretrained_model=r'./models/esm2_t30_150M_UR50D',hidden_size=640,finetune=0).to(device)
if ESM2_MODEL == 'esm2_t33_650M_UR50D':
model = DeepNano_seq(pretrained_model=r'./models/esm2_t33_650M_UR50D',hidden_size=1280,finetune=0).to(device)
if ESM2_MODEL == 'esm2_t36_3B_UR50D':
model = DeepNano_seq(pretrained_model=r'./models/esm2_t36_3B_UR50D',hidden_size=2560,finetune=0).to(device)
if ESM2_MODEL == 'esm2_t48_15B_UR50D':
model = DeepNano_seq(pretrained_model=r'./models/esm2_t48_15B_UR50D',hidden_size=5120,finetune=0).to(device)
model_dir = './output/checkpoint/'
model_name = 'DeepNano_seq({})_DScriptData_finetune1_best.model'.format(ESM2_MODEL)
model_path = model_dir + model_name
weights = torch.load(model_path) # map_location=torch.device('cpu')
model.load_state_dict(weights)
# model.load_state_dict({k.replace('module.',''):v for k,v in weights.items()})
###装载测试数据
pair_list = ['mouse_test.tsv','fly_test.tsv','worm_test.tsv','yeast_test.tsv','ecoli_test.tsv']
seqs_list = ['mouse_dedup.fasta','fly_dedup.fasta','worm_dedup.fasta','yeast_dedup.fasta','ecoli_dedup.fasta']
for n in range(5):
pair_file = pair_list[n]
seqs_file = seqs_list[n]
testDataset = seqData_Dscript(pair_path='./data/D_script/pairs/{}'.format(pair_file),seqs_path='./data/D_script/seqs/{}'.format(seqs_file),addNeg=True)
test_loader = DataLoader(testDataset, batch_size=128, shuffle=False)
#Test
g,p_ave,p_min,p_max = predicting(model, device, test_loader,Model_type=1)
p = (p_ave+p_min+p_max)/3
np.save('./output/results_DeepNano-seq(DScriptData){}_{}.npy'.format(ESM2_MODEL,pair_file),[g,p,p_ave,p_min,p_max])
##Ensemble
precision,recall,accuracy,F1_score,Top10,Top20,Top50,AUC_ROC,AUC_PR = evaluate(g,p)
print("{}: Top10 = {:.4f},Top20 = {:.4f},Top50 = {:.4f},accuracy={:.4f},Recall = {:.4f},Precision={:.4f},F1 score={:.4f},AUC_ROC={:.4f},AUC_PR={:.4f}".format(
pair_file,Top10,Top20,Top50,accuracy,recall,precision,F1_score,AUC_ROC,AUC_PR))
##Ave
precision,recall,accuracy,F1_score,Top10,Top20,Top50,AUC_ROC,AUC_PR = evaluate(g,p_ave)
print("{}: Top10 = {:.4f},Top20 = {:.4f},Top50 = {:.4f},accuracy={:.4f},Recall = {:.4f},Precision={:.4f},F1 score={:.4f},AUC_ROC={:.4f},AUC_PR={:.4f}".format(
'Ave',Top10,Top20,Top50,accuracy,recall,precision,F1_score,AUC_ROC,AUC_PR))
##Min
precision,recall,accuracy,F1_score,Top10,Top20,Top50,AUC_ROC,AUC_PR = evaluate(g,p_min)
print("{}: Top10 = {:.4f},Top20 = {:.4f},Top50 = {:.4f},accuracy={:.4f},Recall = {:.4f},Precision={:.4f},F1 score={:.4f},AUC_ROC={:.4f},AUC_PR={:.4f}".format(
'Min',Top10,Top20,Top50,accuracy,recall,precision,F1_score,AUC_ROC,AUC_PR))
##Max
precision,recall,accuracy,F1_score,Top10,Top20,Top50,AUC_ROC,AUC_PR = evaluate(g,p_max)
print("{}: Top10 = {:.4f},Top20 = {:.4f},Top50 = {:.4f},accuracy={:.4f},Recall = {:.4f},Precision={:.4f},F1 score={:.4f},AUC_ROC={:.4f},AUC_PR={:.4f}".format(
'Max',Top10,Top20,Top50,accuracy,recall,precision,F1_score,AUC_ROC,AUC_PR))