Skip to content

Latest commit

 

History

History
36 lines (31 loc) · 2.68 KB

readme.md

File metadata and controls

36 lines (31 loc) · 2.68 KB

Simple and Deep Graph Convolutional Networks (GCNII)

Note that our implementation is little different with the author's in the optimizer. The author applied different weight decay coefficient on learnable paramenters, while TensorLayerX has not support this feature.

Dataset Statics

Dataset # Nodes # Edges # Classes
Cora 2,708 10,556 7
Citeseer 3,327 9,228 6
Pubmed 19,717 88,651 3
Refer to Planetoid.

Results

TL_BACKEND="tensorflow" python gcnii_trainer.py --dataset cora --lr 0.01 --num_layers 64 --alpha 0.1 --hidden_dim 64 --lambd 0.5 --drop_rate 0.3 --l2_coef 0.001
TL_BACKEND="tensorflow" python gcnii_trainer.py --dataset citeseer --lr 0.01 --num_layers 32 --alpha 0.1 --hidden_dim 256 --lambd 0.5 --drop_rate 0.3 --l2_coef 0.001
TL_BACKEND="tensorflow" python gcnii_trainer.py --dataset pubmed --lr 0.01 --num_layers 16 --alpha 0.1 --hidden_dim 256 --lambd 0.4 --drop_rate 0.3 --l2_coef 0.001
TL_BACKEND="paddle" python gcnii_trainer.py --dataset cora --lr 0.01 --num_layers 64 --alpha 0.1 --hidden_dim 64 --lambd 0.5 --drop_rate 0.3 --l2_coef 0.001
TL_BACKEND="paddle" python gcnii_trainer.py --dataset citeseer --lr 0.01 --num_layers 32 --alpha 0.1 --hidden_dim 256 --lambd 0.4 --drop_rate 0.4 --l2_coef 0.001
TL_BACKEND="paddle" python gcnii_trainer.py --dataset pubmed --lr 0.01 --num_layers 16 --alpha 0.1 --hidden_dim 256 --lambd 0.5 --drop_rate 0.7 --l2_coef 0.001
TL_BACKEND="torch" python gcnii_trainer.py --dataset cora --lr --lr 0.01 --num_layers 64 --alpha 0.1 --hidden_dim 64 --lambd 0.5 --drop_rate 0.3 --l2_coef 0.001
TL_BACKEND="torch" python gcnii_trainer.py --dataset citeseer --lr 0.01 --num_layers 64 --alpha 0.1 --hidden_dim 64 --lambd 0.6 --drop_rate 0.4 --l2_coef 0.001
TL_BACKEND="torch" python gcnii_trainer.py --dataset pubmed --lr 0.01 --num_layers 64 --alpha 0.1 --hidden_dim 64 --lambd 0.4 --drop_rate 0.6 --l2_coef 0.001
Dataset Paper Our(pd) Our(tf) Our(tf)
cora 85.5 83.12(±0.47) 83.23(±0.76) 83.1(±0.9)
pubmed 73.4 72.04(±0.91) 71.9(±0.7) 71.4(±0.6)
citeseer 80.3 80.36(±0.65) 80.1(±0.5) 80.5(±0.3)

Notice that we do not use the same regularization method as the paper do, as TensorlayerX currently do not support it.