forked from BUPT-GAMMA/GammaGL
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathReproduce_GPRGNN.sh
99 lines (89 loc) · 2.1 KB
/
Reproduce_GPRGNN.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
#! /bin/sh
#
# Below is for homophily datasets, sparse split
for i in 1 2 3 4 5 6 7 8 9 10
do
python gprgnn_trainer.py --train_rate 0.025 \
--val_rate 0.025 \
--dataset cora \
--lr 0.01 \
--alpha 0.1
done
python process.py
for i in 1 2 3 4 5 6 7 8 9 10
do
python gprgnn_trainer.py --train_rate 0.025 \
--val_rate 0.025 \
--dataset citeseer \
--lr 0.01 \
--alpha 0.1
done
python process.py
for i in 1 2 3 4 5 6 7 8 9 10
do
python gprgnn_trainer.py --train_rate 0.025 \
--val_rate 0.025 \
--dataset pubmed \
--lr 0.05 \
--alpha 0.2
done
python process.py
for i in 1 2 3 4 5 6 7 8 9 10
do
python gprgnn_trainer.py --train_rate 0.025 \
--val_rate 0.025 \
--dataset computers \
--lr 0.05 \
--alpha 0.5
done
# python process.py
for i in 1 2 3 4 5 6 7 8 9 10
do
python gprgnn_trainer.py --train_rate 0.025 \
--val_rate 0.025 \
--dataset photo \
--lr 0.01 \
--alpha 0.5
done
python process.py
# Below is for heterophily datasets, dense split
for i in 1 2 3 4 5 6 7 8 9 10
do
python gprgnn_trainer.py --train_rate 0.6 \
--val_rate 0.2 \
--dataset chameleon \
--lr 0.05 \
--alpha 1.0 \
--l2_coef 0.0 \
--dprate 0.7
done
python process.py
for i in 1 2 3 4 5 6 7 8 9 10
do
python gprgnn_trainer.py --train_rate 0.6 \
--val_rate 0.2 \
--dataset squirrel \
--lr 0.05 \
--alpha 0.0 \
--dprate 0.7 \
--l2_coef 0.0
done
python process.py
for i in 1 2 3 4 5 6 7 8 9 10
do
python gprgnn_trainer.py --train_rate 0.6 \
--val_rate 0.2 \
--dataset texas \
--lr 0.05 \
--alpha 1.0
done
python process.py
for i in 1 2 3 4 5 6 7 8 9 10
do
python gprgnn_trainer.py --train_rate 0.6 \
--val_rate 0.2 \
--dataset cornell \
--lr 0.05 \
--alpha 0.9
done
python process.py