Skip to content

Latest commit

 

History

History
37 lines (27 loc) · 2.62 KB

readme.md

File metadata and controls

37 lines (27 loc) · 2.62 KB

Interpretable and Efficient Heterogeneous Graph Convolutional Network (ieHGCN)

Dataset Statics

Dataset # Nodes # Node Types # Edges # Edge Types Target # Classes
DBLP 26,128 4 239,566 6 author 4
IMDB 21,420 4 86,642 6 movie 4

DBLP dataset refer to HGBDataset.

IMDBdataset refer to IMDB.

Performance

For the DBLP dataset: train test val = 974, 1420, 243 about 37% for training.

For the IMDB dataset: train test val = 400, 3478, 400, about 9% for training.

Dataset Paper(80% training) Paper(60% training) Paper(40% training) Paper(20% training) Our(tf) Our(th) Our(pd)
DBLP 96.29 95.25 93.83 93.85 92.30±0.49% 90.90±0.74% 91.18±0.66%
IMDB 58.35 60.84 59.81 56.60 58.10±0.42% 55.22±1.21% 56.08±2.13%
TL_BACKEND="tensorflow" python3 iehgcn_trainer.py --dataset DBLP --n_epoch 30 --lr 0.01 --num_layers 3 --hidden_channels [64, 32] --l2_coef 0.0005 --drop_rate 0.2
TL_BACKEND="torch" python3 iehgcn_trainer.py --dataset DBLP --n_epoch 30 --lr 0.005 --num_layers 4 --hidden_channels [64, 32, 16] --l2_coef 0.0005 --drop_rate 0.0
TL_BACKEND="paddle" python3 iehgcn_trainer.py --dataset DBLP --n_epoch 30 --lr 0.01 --num_layers 4 --hidden_channels [64, 32, 16] --l2_coef 0.0005 --drop_rate 0.1

TL_BACKEND="torch" python3 iehgcn_trainer.py --dataset IMDB --n_epoch 25 --lr 0.01 --num_layers 3 --hidden_channels [64, 32] --l2_coef 0.0005 --drop_rate 0.2
TL_BACKEND="tensorflow" python3 iehgcn_trainer.py --dataset IMDB --n_epoch 25 --lr 0.005 --num_layers 3 --hidden_channels [64, 32] --l2_coef 0.0005 --drop_rate 0.2
TL_BACKEND="paddle" python3 iehgcn_trainer.py --dataset IMDB --n_epoch 25 --lr 0.005 --num_layers 3 --hidden_channels [64, 32] --l2_coef 0.0005 --drop_rate 0.2