Variational Graph Auto-Encoders (VGAE)
Dataset
# Nodes
# Edges
# Classes
Cora
2,708
10,556
7
Citeseer
3,327
9,228
6
Pubmed
19,717
88,651
3
Refer to Planetoid .
GAE* denotes experiments without using input features, GAE and VGAE use input features.
We report area under the ROC curve (AUC) and average precision (AP) scores for each model on the test set.
# available dataset: "cora", "citeseer", "pubmed"
# GAE model with input features
TL_BACKEND=" tensorflow" python vgae_trainer.py --dataset cora --model GAE --features 1 --num_layers 2 --lr 0.01 --l2_coef 0. --drop_rate 0.
TL_BACKEND=" tensorflow" python vgae_trainer.py --dataset citeseer --model GAE --features 1 --num_layers 2 --lr 0.01 --l2_coef 0. --drop_rate 0.
TL_BACKEND=" tensorflow" python vgae_trainer.py --dataset pubmed --model GAE --features 1 --num_layers 2 --lr 0.01 --l2_coef 0. --drop_rate 0.
TL_BACKEND=" torch" python vgae_trainer.py --dataset cora --model GAE --features 1 --num_layers 2 --lr 0.01 --l2_coef 0. --drop_rate 0.
TL_BACKEND=" torch" python vgae_trainer.py --dataset citeseer --model GAE --features 1 --num_layers 2 --lr 0.01 --l2_coef 0. --drop_rate 0.
TL_BACKEND=" torch" python vgae_trainer.py --dataset pubmed --model GAE --features 1 --num_layers 2 --lr 0.01 --l2_coef 0. --drop_rate 0.
TL_BACKEND=" paddle" python vgae_trainer.py --dataset cora --model GAE --features 1 --num_layers 2 --lr 0.01 --l2_coef 0. --drop_rate 0.
TL_BACKEND=" paddle" python vgae_trainer.py --dataset citeseer --model GAE --features 1 --num_layers 2 --lr 0.01 --l2_coef 0. --drop_rate 0.
TL_BACKEND=" paddle" python vgae_trainer.py --dataset pubmed --model GAE --features 1 --num_layers 2 --lr 0.01 --l2_coef 0. --drop_rate 0.
Dataset
Paper(GAE)(AUC,AP)
Our(tf)(GAE)(AUC,AP)
Our(th)(GAE)(AUC,AP)
Our(pd)(GAE)(AUC,AP)
cora
91.0 92.0
91.30±0.85 92.42±0.43
92.02±0.44 93.12±0.16
91.16±0.73 92.04±0.87
citeseer
89.5 89.9
87.06±0.14 88.18±0.26
89.62±0.48 89.86±0.73
89.61±1.34 90.09±1.56
pubmed
96.4 96.5
97.06±0.32 96.68±0.31
97.11±0.56 97.13±0.23
96.25±0.29 96.35±0.34
# available dataset: "cora", "citeseer", "pubmed"
# GAE model without input features
TL_BACKEND=" tensorflow" python vgae_trainer.py --dataset cora --model GAE --features 0 --num_layers 2 --lr 0.01 --l2_coef 0. --drop_rate 0.
TL_BACKEND=" tensorflow" python vgae_trainer.py --dataset citeseer --model GAE --features 0 --num_layers 2 --lr 0.01 --l2_coef 0. --drop_rate 0.
TL_BACKEND=" tensorflow" python vgae_trainer.py --dataset pubmed --model GAE --features 0 --num_layers 2 --lr 0.01 --l2_coef 0. --drop_rate 0.
TL_BACKEND=" torch" python vgae_trainer.py --dataset cora --model GAE --features 0 --num_layers 2 --lr 0.01 --l2_coef 0. --drop_rate 0.
TL_BACKEND=" torch" python vgae_trainer.py --dataset citeseer --model GAE --features 0 --num_layers 2 --lr 0.01 --l2_coef 0. --drop_rate 0.
TL_BACKEND=" torch" python vgae_trainer.py --dataset pubmed --model GAE --features 0 --num_layers 2 --lr 0.01 --l2_coef 0. --drop_rate 0.
TL_BACKEND=" paddle" python vgae_trainer.py --dataset cora --model GAE --features 0 --num_layers 2 --lr 0.01 --l2_coef 0. --drop_rate 0.
TL_BACKEND=" paddle" python vgae_trainer.py --dataset citeseer --model GAE --features 0 --num_layers 2 --lr 0.01 --l2_coef 0. --drop_rate 0.
TL_BACKEND=" paddle" python vgae_trainer.py --dataset pubmed --model GAE --features 0 --num_layers 2 --lr 0.01 --l2_coef 0. --drop_rate 0.
Dataset
Paper(GAE*)(AUC,AP)
Our(tf)(GAE)(AUC,AP)
Our(th)(GAE)(AUC,AP)
Our(pd)(GAE)(AUC,AP)
cora
84.3 88.1
85.88±0.22 89.55±0.77
83.78±0.71 87.28±0.88
85.56±1.41 89.28±1.15
citeseer
78.7 84.1
77.45±0.66 83.76±0.32
78.23±0.19 85.21±0.47
78.91±1.40 83.93±0.65
pubmed
82.2 87.4
83.02±0.13 87.32±0.55
83.53±0.29 87.95±0.66
80.62±0.68 86.58±0.47
VGAE* denotes experiments without using input features, GAE and VGAE use input features.
We report area under the ROC curve (AUC) and average precision (AP) scores for each model on the test set.
# available dataset: "cora", "citeseer", "pubmed"
# VGAE model with input features
TL_BACKEND=" tensorflow" python vgae_trainer.py --dataset cora --model VGAE --features 1 --num_layers 2 --lr 0.01 --l2_coef 0. --drop_rate 0.
TL_BACKEND=" tensorflow" python vgae_trainer.py --dataset citeseer --model VGAE --features 1 --num_layers 2 --lr 0.01 --l2_coef 0. --drop_rate 0.
TL_BACKEND=" tensorflow" python vgae_trainer.py --dataset pubmed --model VGAE --features 1 --num_layers 2 --lr 0.01 --l2_coef 0. --drop_rate 0.
TL_BACKEND=" torch" python vgae_trainer.py --dataset cora --model VGAE --features 1 --num_layers 2 --lr 0.01 --l2_coef 0. --drop_rate 0.
TL_BACKEND=" torch" python vgae_trainer.py --dataset citeseer --model VGAE --features 1 --num_layers 2 --lr 0.01 --l2_coef 0. --drop_rate 0.
TL_BACKEND=" torch" python vgae_trainer.py --dataset pubmed --model VGAE --features 1 --num_layers 2 --lr 0.01 --l2_coef 0. --drop_rate 0.
TL_BACKEND=" paddle" python vgae_trainer.py --dataset cora --model VGAE --features 1 --num_layers 2 --lr 0.01 --l2_coef 0. --drop_rate 0.
TL_BACKEND=" paddle" python vgae_trainer.py --dataset citeseer --model VGAE --features 1 --num_layers 2 --lr 0.01 --l2_coef 0. --drop_rate 0.
TL_BACKEND=" paddle" python vgae_trainer.py --dataset pubmed --model VGAE --features 1 --num_layers 2 --lr 0.01 --l2_coef 0. --drop_rate 0.
Dataset
Paper(VGAE)(AUC,AP)
Our(tf)(VGAE)(AUC,AP)
Our(th)(VGAE)(AUC,AP)
Our(pd)(VGAE)(AUC,AP)
cora
91.4 92.6
92.91±0.62 93.99±0.87
90.80±0.32 91.51±0.74
91.42±0.23 92.56±0.54
citeseer
90.8 92.0
91.48±0.56 93.11±0.12
90.81±0.34 91.99±0.47
90.39±1.27 91.32±1.49
pubmed
94.4 94.7
93.91±0.72 93.79±0.65
94.45±0.24 94.86±0.35
95.41±0.16 95.48±0.20
# available dataset: "cora", "citeseer", "pubmed"
# VGAE model without input features
TL_BACKEND=" tensorflow" python vgae_trainer.py --dataset cora --model VGAE --features 0 --num_layers 2 --lr 0.01 --l2_coef 0. --drop_rate 0.
TL_BACKEND=" tensorflow" python vgae_trainer.py --dataset citeseer --model VGAE --features 0 --num_layers 2 --lr 0.01 --l2_coef 0. --drop_rate 0.
TL_BACKEND=" tensorflow" python vgae_trainer.py --dataset pubmed --model VGAE --features 0 --num_layers 2 --lr 0.01 --l2_coef 0. --drop_rate 0.
TL_BACKEND=" torch" python vgae_trainer.py --dataset cora --model VGAE --features 0 --num_layers 2 --lr 0.01 --l2_coef 0. --drop_rate 0.
TL_BACKEND=" torch" python vgae_trainer.py --dataset citeseer --model VGAE --features 0 --num_layers 2 --lr 0.01 --l2_coef 0. --drop_rate 0.
TL_BACKEND=" torch" python vgae_trainer.py --dataset pubmed --model VGAE --features 0 --num_layers 2 --lr 0.01 --l2_coef 0. --drop_rate 0.
TL_BACKEND=" paddle" python vgae_trainer.py --dataset cora --model VGAE --features 0 --num_layers 2 --lr 0.01 --l2_coef 0. --drop_rate 0.
TL_BACKEND=" paddle" python vgae_trainer.py --dataset citeseer --model VGAE --features 0 --num_layers 2 --lr 0.01 --l2_coef 0. --drop_rate 0.
TL_BACKEND=" paddle" python vgae_trainer.py --dataset pubmed --model VGAE --features 0 --num_layers 2 --lr 0.01 --l2_coef 0. --drop_rate 0.
Dataset
Paper(VGAE*)(AUC,AP)
Our(tf)(VGAE)(AUC,AP)
Our(th)(VGAE)(AUC,AP)
Our(pd)(VGAE)(AUC,AP)
cora
84.0 87.7
84.35±0.21 88.11±0.68
83.42±0.82 88.05±0.27
84.76±0.76 88.04±0.70
citeseer
78.9 84.1
79.27±0.36 83.36±0.52
79.91±0.26 84.33±0.27
77.13±0.91 81.84±0.63
pubmed
82.7 87.5
82.97±0.51 86.95±0.86
81.97±0.78 86.96±0.15
84.53±3.74 86.60±0.55