-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathpreact_resnet.py
145 lines (120 loc) · 5.24 KB
/
preact_resnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
"""From
https://github.com/RobustBench/robustbench/blob/master/robustbench/model_zoo/architectures/resnet.py"""
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from timm.models.helpers import build_model_with_cfg
from timm.models.registry import register_model
import torch.nn as nn
import torch.nn.functional as F
def _cfg(url='', **kwargs):
return {
'url': url,
'num_classes': 1000,
'input_size': (3, 224, 224),
'pool_size': None,
'crop_pct': 0.875,
'interpolation': 'bilinear',
'fixed_input_size': True,
'mean': IMAGENET_DEFAULT_MEAN,
'std': IMAGENET_DEFAULT_STD,
'first_conv': 'conv1',
'classifier': 'linear',
**kwargs
}
default_cfgs = {
'preact_resnet_18': _cfg(input_size=(3, 224, 224)),
}
class PreActBlock(nn.Module):
'''Pre-activation version of the BasicBlock.'''
expansion = 1
def __init__(self, in_planes, planes, stride=1, out_shortcut=False):
super().__init__()
self.out_shortcut = out_shortcut
self.bn1 = nn.BatchNorm2d(in_planes)
self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(planes)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False)
if stride != 1 or in_planes != self.expansion * planes:
self.shortcut = nn.Sequential(
nn.Conv2d(in_planes, self.expansion * planes, kernel_size=1, stride=stride, bias=False))
def forward(self, x):
out = F.relu(self.bn1(x))
shortcut = self.shortcut(out if self.out_shortcut else x) if hasattr(self, 'shortcut') else x
out = self.conv1(out)
out = self.conv2(F.relu(self.bn2(out)))
out += shortcut
return out
class PreActBottleneck(nn.Module):
'''Pre-activation version of the original Bottleneck module.'''
expansion = 4
def __init__(self, in_planes, planes, stride=1):
super().__init__()
self.bn1 = nn.BatchNorm2d(in_planes)
self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=1, bias=False)
self.bn2 = nn.BatchNorm2d(planes)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn3 = nn.BatchNorm2d(planes)
self.conv3 = nn.Conv2d(planes, self.expansion * planes, kernel_size=1, bias=False)
if stride != 1 or in_planes != self.expansion * planes:
self.shortcut = nn.Sequential(
nn.Conv2d(in_planes, self.expansion * planes, kernel_size=1, stride=stride, bias=False))
def forward(self, x):
out = F.relu(self.bn1(x))
shortcut = self.shortcut(out) if hasattr(self, 'shortcut') else x
out = self.conv1(out)
out = self.conv2(F.relu(self.bn2(out)))
out = self.conv3(F.relu(self.bn3(out)))
out += shortcut
return out
class PreActResNet(nn.Module):
def __init__(self,
block,
num_blocks,
num_classes=10,
bn_before_fc=False,
out_shortcut=False,
in_chans=3,
img_size=224,
drop_rate=0.0):
super().__init__()
self.num_classes = num_classes
self.in_planes = 64
self.bn_before_fc = bn_before_fc
self.out_shortcut = out_shortcut
self.conv1 = nn.Conv2d(in_chans, 64, kernel_size=3, stride=1, padding=1, bias=False)
self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1)
self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2)
self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2)
self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2)
self.in_features = 512 * block.expansion
if bn_before_fc:
self.bn = nn.BatchNorm2d(self.in_features)
self.linear = nn.Linear(self.in_features, num_classes)
def _make_layer(self, block, planes, num_blocks, stride):
strides = [stride] + [1] * (num_blocks - 1)
layers = []
for stride in strides:
layers.append(block(self.in_planes, planes, stride, out_shortcut=self.out_shortcut))
self.in_planes = planes * block.expansion
return nn.Sequential(*layers)
def forward(self, x):
out = self.conv1(x)
out = self.layer1(out)
out = self.layer2(out)
out = self.layer3(out)
out = self.layer4(out)
if self.bn_before_fc:
out = F.relu(self.bn(out))
out = F.avg_pool2d(out, 4)
out = out.view(out.size(0), -1)
out = self.linear(out)
return out
def reset_classifier(self, num_classes, global_pool=''):
self.num_classes = num_classes
self.head = nn.Linear(self.in_features, num_classes) if num_classes > 0 else nn.Identity()
def _create_preact_resnet(variant, pretrained=False, default_cfg=None, **kwargs):
model = build_model_with_cfg(PreActResNet, variant, pretrained, **kwargs)
return model
@register_model
def preact_resnet_18(pretrained=False, **kwargs):
model_args = dict(block=PreActBlock, num_blocks=[2, 2, 2, 2])
return _create_preact_resnet('preact_resnet_18', pretrained, **model_args)