forked from sair-lab/interestingness
-
Notifications
You must be signed in to change notification settings - Fork 0
/
autoencoder.py
156 lines (120 loc) · 5.15 KB
/
autoencoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
#!/usr/bin/env python3
import os
import copy
import torch
import os.path
import argparse
import numpy as np
import torch.nn as nn
import torch.optim as optim
from torchvision import models
import torch.utils.data as Data
def encoder(model):
models = {'vgg': VGG,
'resnet': ResNet,
'mobilenet': MobileNetV2}
Model = models[model]
return Model()
class AutoEncoder(nn.Module):
def __init__(self, model='vgg'):
super().__init__()
self.encoder = encoder(model)
self.decoder = Decoder()
def forward(self, x):
coding = self.encoder(x)
output = self.decoder(coding)
return output
class VGG(models.VGG):
def __init__(self, pretrained=True, requires_grad=True, remove_fc=True, show_params=False):
super().__init__(models.vgg16().features)
if pretrained:
self.load_state_dict(models.vgg16(pretrained=True).state_dict())
if not requires_grad:
for param in super().parameters():
param.requires_grad = False
if remove_fc:
del self.classifier
if show_params:
for name, param in self.named_parameters():
print(name, param.size())
def forward(self, x):
x = self.features(x)
return x
class ResNet(models.ResNet):
def __init__(self, pretrained=True, requires_grad=True, remove_fc=True, show_params=False):
super().__init__(block=models.resnet.BasicBlock, layers=[2, 2, 2, 2])
if pretrained:
self.load_state_dict(models.resnet18(pretrained=True).state_dict())
if not requires_grad:
for param in super().parameters():
param.requires_grad = False
if remove_fc:
del self.fc
if show_params:
for name, param in self.named_parameters():
print(name, param.size())
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
return x
class MobileNetV2(models.MobileNetV2):
def __init__(self, pretrained=True, requires_grad=True, remove_fc=True, show_params=False):
super().__init__()
if pretrained:
self.load_state_dict(models.mobilenet_v2(pretrained=True).state_dict())
if not requires_grad:
for param in super().parameters():
param.requires_grad = False
if remove_fc:
del self.classifier
if show_params:
for name, param in self.named_parameters():
print(name, param.size())
def forward(self, x):
return self.features(x)
class Decoder(nn.Module):
def __init__(self, in_channels=512): # Use 1280 for MobileNetV2
super().__init__()
self.relu = nn.ReLU(inplace=True)
self.deconv1 = nn.ConvTranspose2d(in_channels, 512, kernel_size=3, stride=2, padding=1, dilation=1, output_padding=1)
self.bn1 = nn.BatchNorm2d(512)
self.deconv2 = nn.ConvTranspose2d(512, 256, kernel_size=3, stride=2, padding=1, dilation=1, output_padding=1)
self.bn2 = nn.BatchNorm2d(256)
self.deconv3 = nn.ConvTranspose2d(256, 128, kernel_size=3, stride=2, padding=1, dilation=1, output_padding=1)
self.bn3 = nn.BatchNorm2d(128)
self.deconv4 = nn.ConvTranspose2d(128, 64, kernel_size=3, stride=2, padding=1, dilation=1, output_padding=1)
self.bn4 = nn.BatchNorm2d(64)
self.deconv5 = nn.ConvTranspose2d(64, 32, kernel_size=3, stride=2, padding=1, dilation=1, output_padding=1)
self.bn5 = nn.BatchNorm2d(32)
self.classifier = nn.Conv2d(32, 3, kernel_size=1)
def forward(self, x):
x = self.bn1(self.relu(self.deconv1(x))) # size=(N, 512, x.H/16, x.W/16)
x = self.bn2(self.relu(self.deconv2(x))) # size=(N, 256, x.H/8, x.W/8)
x = self.bn3(self.relu(self.deconv3(x))) # size=(N, 128, x.H/4, x.W/4)
x = self.bn4(self.relu(self.deconv4(x))) # size=(N, 64, x.H/2, x.W/2)
x = self.bn5(self.relu(self.deconv5(x))) # size=(N, 32, x.H, x.W)
x = self.classifier(x) # size=(N, n_class, x.H/1, x.W/1)
return x # size=(N, n_class, x.H/1, x.W/1)
if __name__ == "__main__":
from dataset import SubTF
from torchutil import show_batch
import torchvision.transforms as transforms
transform = transforms.Compose([
transforms.CenterCrop(tuple([320, 320])),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])])
data = SubTF(root='/data/datasets', train=True, transform=transform)
loader = Data.DataLoader(dataset=data, batch_size=1, shuffle=True)
net, best_loss = torch.load('saves/resnet.pt')
with torch.no_grad():
for batch_idx, inputs in enumerate(loader):
if torch.cuda.is_available():
inputs = inputs.cuda()
outputs = net(inputs)
show_batch(torch.cat([inputs, outputs], dim=0), name='test', waitkey=1000)